The Strength of Equality Oracles in Communication

ITCS 2023 (Full Talk)

Toniann Pitassi
Columbia University

Morgan Shirley
University of Toronto

Adi Shraibman
The Academic College of Tel Aviv-Yaffo

Communication Complexity

"Efficient" means polylogarithmically many bits sent.

Models of interest: Randomness, Nondeterminism, Oracles

Communication Matrices

$$
\boldsymbol{y}
$$

The Equality Function

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \operatorname{EQUALITY}(x, y)= \begin{cases}1 & \text { if } x=y \\
0 & \text { if } x \neq y\end{cases}
$$

Hard for deterministic communication: high rank

Easy for randomized communication: hashing

Example: The Greater-Than Function

$$
\operatorname{GrEATER-ThAN}(x, y)= \begin{cases}1 & \text { if } x>y \\ 0 & \text { if } x \leq y\end{cases}
$$

Efficient randomized protocol via reduction to Equality:

- Binary search for first coordinate i where inputs differ:
- If left half of number is equal, recurse on right
- Otherwise, recurse on left
- Check whether $x_{i}>y_{i}$

$$
\begin{array}{llll:l:lll}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

Equality Oracles vs. Randomness

CLV19 shows that these are not the same!

What happens when nondeterminism is added? What happens when only one oracle call is allowed?

We characterize these models using properties of the communication matrix.

Models in Our Paper

Many calls One call
$N P^{E Q c c} \quad \exists \cdot E Q^{c c}$
$U P^{E Q c c}$
$\mathrm{U} \cdot \mathrm{EQ}^{\mathrm{cc}}$
Unambiguous
Nondeterministic

Matrix Characterizations: Blocky Matrices

Generalizations of identity matrices, studied in HHH22.

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

These characterize Equality oracle calls.

Blocky covering number of M : Number of blocky matrices needed to entrywise or to M. Denoted $C_{1}^{B}(M)$. Blocky partition number of M : Number of blocky matrices needed to entrywise sum to M. Denoted $\chi_{1}^{B}(M)$.

Blocky Covering Number Example

0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	0	1	1	1	0	1	1	1	0	0	0	0	0
1	1	1	0	1	1	1	0	1	1	1	0	0	0	0	0
1	1	1	0	1	1	1	0	1	1	1	0	0	0	0	0
1	1	1	1	1	1	0	1	1	1	1	1	1	0	0	0
1	1	1	0	0	0	0	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	0
1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	0

Matrix Characterizations: Binary Factorization Norm

$$
\gamma_{2}(A)=\min _{\substack{X, Y \\ X Y^{\top}=A}} r(X) r(Y)
$$

$$
\gamma_{2, B}(A)=\min _{\substack{\{0,1\}-\text { matrices } X, Y \\ X Y^{\top}=A}} r(X) r(Y)
$$

Matrix Characterizations: Summary

$$
\text { Many calls } \quad \text { One call }
$$

Nondeterministic
$N P^{\mathrm{EQcc}} \quad \exists \cdot E Q^{\mathrm{cc}}$
$\log C_{1}^{B}$
$\log \gamma_{2, B}^{\infty}$
Unambiguous
Nondeterministic
$U P^{E Q c c}$
$U \cdot E Q^{c c}$
$\log \chi_{1}^{B}$
$\log \gamma_{2, B}$

Application: Upper Bounds

CMS20: The function SinkoXOR has high randomized complexity, but low approximate rank (disproving LARC).

Application: Upper Bounds

U • EQ ${ }^{\text {cc }}$ Protocol:

- Prover announces unique vertex v that is a sink.
- Alice computes w such that v is a sink iff $y[v]=w$.
- Check if $y[v]=w$ using Equality oracle.

Application: Upper Bounds

New proof of the upper bound:

- SinkoXOR has an efficient U• $\mathrm{EQ}^{c \mathrm{c}}$ protocol.
- $U \cdot E Q^{c c}$ is tightly bounded by $\gamma_{2, B}$.
- $\gamma_{2, B}$ is lower-bounded by γ_{2}.
- γ_{2} is lower-bounded by approximate rank.

So low U $\cdot \mathrm{EQ}^{\text {cc }}$ complexity implies low approximate rank!

Corollary: $\mathrm{P}^{\mathrm{EQcc}} \subsetneq \mathrm{UP}{ }^{\mathrm{EQcc}}$ (contrast with $\mathrm{P}^{c c}=U \mathrm{P}^{c c}$).

Application: Lower Bounds

CLV19 separates $P^{E Q c c}$ from randomized communication.

What about $N P^{E Q c c}$ and $M A^{c c}$?

Our techniques help strengthen the proof from CLV19 to separate $N P^{E Q c c}$ from MA ${ }^{c c}$.

Application: Lower Bounds (Proof Sketch)

Application: Lower Bounds (Proof Sketch)

| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

Application: Lower Bounds (Proof Sketch)

Value depending on the size of the matrix
$E_{X}(i)$: event that $R_{i} \in \mathcal{R}$ contains row x $E_{y}(i)$: event that $R_{i} \in \mathcal{R}$ contains row y m, n : dimensions of matrix M

$$
\begin{aligned}
(m+n) C_{1}^{B}(M) & \geq \sum_{x} \sum_{i} E_{x}(i)+\sum_{y} \sum_{i} E_{y}(i)=\sum_{i}\left(\sum_{x} E_{x}(i)+\sum_{y} E_{y}(i)\right) \\
& \geq 2 \sum_{i} \sqrt{\left(\sum_{x} E_{x}(i)\right)\left(\sum_{y} E_{y}(i)\right)}=2 \sum_{i} \sqrt{\sum_{x, y}\left(E_{x}(i) E_{y}(i)\right)} \\
& =2 \sum_{i} \sqrt{\left|R_{i}\right|} .
\end{aligned}
$$

Application: Lower Bounds (Proof Sketch)

Value depending on the size of the matrix

$$
C \cdot C_{1}^{B}(M) \geq \sum_{i} \sqrt{\left|R_{i}\right|} \quad\left|R_{i}\right| \leq \beta \quad \sum_{i}\left|R_{i}\right| \geq \alpha
$$

$$
C_{1}^{B}(M) \geq \Omega\left(\frac{\alpha}{C \sqrt{\beta}}\right)
$$

Open Problems

Open Problems: Intersection Classes

Recall: $P^{E Q c c} \subsetneq U P^{E Q c c}$ but $P^{c c}=U P^{c c}$

AUY83: $P^{c c}=N P^{c c} \cap \operatorname{coNP}{ }^{c c}$

What happens if we add Equality oracles here?

$$
\begin{aligned}
& P^{c c} \text { vs. } N P^{E Q c c} \cap \operatorname{coNP} P^{E Q c c} \\
& P^{c c} \text { vs. UP }{ }^{E Q c c} \cap \operatorname{coUP} P^{E Q c c}
\end{aligned}
$$

Open Problems: Intersection Classes (Ideas)

Recall: $C_{1}^{B} \geq \Omega\left(\frac{\alpha}{C \sqrt{\beta}}\right)$
α is the number of ones in the matrix
β is the size of the largest 1-rectangle of the matrix
C is a value depending on the size of the matrix

If a function is in $N P^{E Q c c} \cap \operatorname{coNP} P^{E Q c c}$:

- If it has a lot of 1 s , it has a large 1 -rectangle.
- If it has a lot of 0 s , it has a large 0 -rectangle.
- Therefore, it has a large 1-rectangle or a large 0-rectangle!

Thanks!

