
Total Search Problems in ZPP

Noah Fleming Stefan Grosser Siddhartha Jain Jiawei Li
Lund & Columbia McGill UT Austin UT Austin

Hanlin Ren Morgan Shirley Weiqiang Yuan
Oxford & IAS Lund EPFL

November 26, 2025

Abstract

We initiate a systematic study of TFZPP, the class of total NP search problems solvable by
polynomial time randomized algorithms. TFZPP contains a variety of important search problems
such as Bertrand-Chebyshev (finding a prime between N and 2N), refuter problems for many
circuit lower bounds, and Lossy-Code. The Lossy-Code problem has found prominence due to
its fundamental connections to derandomization, catalytic computing, and the metamathematics
of complexity theory, among other areas.

While TFZPP collapses to FP under standard derandomization assumptions in the white-box
setting, we are able to separate TFZPP from the major TFNP subclasses in the black-box setting.
In fact, we are able to separate it from every uniform TFNP class assuming that NP is not
in quasi-polynomial time. To do so, we extend the connection between proof complexity and
black-box TFNP to randomized proof systems and randomized reductions.

Next, we turn to developing a taxonomy of TFZPP problems. We highlight a problem
called Nephew, originating from an infinity axiom in set theory. We show that Nephew is in
PWPP∩TFZPP and conjecture that it is not reducible to Lossy-Code. Intriguingly, except for
some artificial examples, most other black-box TFZPP problems that we are aware of reduce to
Lossy-Code:

• We define a problem called Empty-Child capturing finding a leaf in a rooted (binary) tree,
and show that this problem is equivalent to Lossy-Code. We also show that a variant of
Empty-Child with “heights” is complete for the intersection of SOPL and Lossy-Code.

• We strengthen Lossy-Code with several combinatorial inequalities such as the AM-GM
inequality. Somewhat surprisingly, we show the resulting new problems are still reducible to
Lossy-Code. A technical highlight of this result is that they are proved by formalizations
in bounded arithmetic, specifically in Jeřábek’s theory APC1 (JSL 2007).

• Finally, we show that the Dense-Linear-Ordering problem reduces to Lossy-Code.
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1 Introduction
Total search problems are abundant in theoretical computer science. The formal study of these
problems has been highly impactful to a wide range of areas including game theory [DGP09, CD06],
cryptography [HKKS20, FGH+24, BGSD25], proof complexity [BCE+98, DR23, LPR24, GHJ+22,
Tha24, GKRS19, LLR24, FIM25], and recently in the study of explicit construction problems and
derandomization [KKMP21, Kor21, Kor25]. Central to the latter has been the Range Avoidance
(or simply Avoid) problem.

Avoid. Given a circuit D : {0, 1}n−1 → {0, 1}n, find x ∈ {0, 1}n such that for every y ∈ {0, 1}n−1,
D(y) ̸= x.

Avoid captures the explicit construction problems for many combinatorial objects whose
existence follows from the probabilistic method. Notable examples include functions with high circuit
complexity, rigid matrices, Ramsey graphs, strong error correcting codes, and many more [Kor21,
Jeř07a, GLW25, GGNS23]. By developing algorithms for Avoid, a line of work has shown circuit
lower bounds against a variety of classes [RSW22, CHLR23, CHR24, Li24].

Avoid belongs to the class TFΣP
2 , the second level of the total function polynomial hierarchy. If

one Herbrandizes1 the Avoid problem, then one obtains its TFNP sibling, the Lossy-Code problem
(see [Kor25] for a survey). This problem asks to find an element that is not in the range of a pair of
compressing and decompressing maps C and D.

Lossy-Code. Given a pair of circuits C : {0, 1}n → {0, 1}n−1 and D : {0, 1}n−1 → {0, 1}n, find
x ∈ {0, 1}n such that D(C(x)) ̸= x.

Lossy-Code was originally defined by Jeřábek in [Jeř07a, Jeř07b], under the name retraction weak
pigeonhole principle, showing that it is equivalent to the set of problems whose totality is provable in
APC1. Since then, it has been considered predominantly through the lens of bounded arithmetic as a
TFNP problem and as a combinatorial principle [Mül21, KT22]. Korten [Kor22] asked to understand
the set of TFNP problems that are reducible to Lossy-Code. Besides being an interesting problem
on its own, Lossy-Code also arises naturally in a few other places, further motivating its study:

• Derandomization. In the recent certified derandomization framework [PRZ23], the derandom-
ization algorithm is required to either output the correct answer, or report that the underlying
circuit lower bound assumption is false by providing a small circuit violating the assumption.
It turns out that certified derandomization is characterized by Lossy-Code [LPT24].

Such derandomization ideas are particularly explored in the context of catalytic com-
puting [BCK+14, Mer23] in a framework known as “compress-or-random” [Pyn24, CLMP25,
KMPS25, AM25]: If the contents of the catalytic tape is “incompressible” (which usually
means that it is not a solution of a certain Lossy-Code instance), then it can be used for
derandomization; otherwise we can compress the catalytic tape and obtain more free space.
As a result, although we are currently unable to prove that CL (catalytic logspace) is in P, we
can show that CL reduces to Lossy-Code [CLMP25].

• Metamathematics of complexity theory. It turns out that (variants of) Lossy-Code captures
the complexity of many refuter problems [CJSW24], which are natural total search problems
reflecting the metamathematical complexity of proving lower bounds. Many lower bounds
in circuit complexity and communication complexity have refuter problems equivalent to
Lossy-Code [Kor22, CLO24], and the refuter complexity for some proof complexity lower
bounds is captured by variants of Lossy-Code as well [LLR24].

1Herbrandization is a basic construction in logic; see Appendix A for a short overview.
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• Bounded arithmetic. A basic theory of bounded arithmetic for approximate counting
and reasoning about randomized computation is APC1, developed in a series of papers
by Jeřábek [Jeř04, Jeř05, Jeř07a]. Wilkie’s witnessing theorem [Tha02, Jeř04] implies that
Lossy-Code is “complete” for APC1 in the following sense: APC1 proves the totality of
Lossy-Code, and every TFNP problem provably total in APC1 reduces to Lossy-Code.

Lossy-Code belongs to the class TFZPP, the subclass of TFNP containing the total search
problems that admit polynomial-time randomized algorithms, introduced in [BO06]. Since we are
dealing with total NP search problems, every randomized algorithm that may make mistakes can be
turned into one that does not make any mistakes.2 Hence, it seems that TFZPP is the only natural
(semantic) subclass of TFNP capturing randomized polynomial time.

Besides Lossy-Code, there are a variety of important total search problems that sit inside
TFZPP. We list two of them that we think reflect the importance of TFZPP the best:

Example 1.1. The Bertrand–Chebyshev theorem states that for every integer N ≥ 1, there is a prime number
between N and 2N . This motivates the following total search problem called Bertrand-Chebyshev: Given
an integer N (represented in binary), output a prime number between N and 2N . In fact, the Prime Number
Theorem implies that there are Θ(N/ log N) such prime numbers, and the AKS primality test [AKS04] provides
a deterministic method for verifying solutions, hence Bertrand-Chebyshev is in TFZPP.

The complexity of Bertrand-Chebyshev remains elusive. Unless one makes strong assumptions such as
Cramér’s conjecture [Cra36] or P = BPP [IW97], the best known deterministic algorithm needs to spend ≈ N1/2

time [LO87, BHP01] (which is exponential in the input length). Improving this time bound was exactly the focus of
the Polymath 4 project [TCH12]; however, despite much effort, no unconditional progress was made. This problem
is also the flagship problem in the study of pseudodeterministic algorithms [GG11, OS17, LOS21, CLO+23].

On the complexity-theoretic side, the only upper bound known for Bertrand-Chebyshev is that it
reduces to Lossy-CodeFactoring, i.e., the Lossy-Code problem where both input circuits C, D have access to a
Factoring oracle [PWW88, Kor22]. It is unclear if it belongs to any standard TFNP subclasses such as PLS or
PPA [GP18, GL25].

Example 1.2. A family of important total search problems is refuter problems [CLW20, CJSW24, CTW23]
for complexity lower bounds. Let C be a circuit class and L be a hard problem for C , the refuter problem,
Refuter(L ̸∈ C ), is the following total search problem: given a small C circuit C attempting to compute L, the
goal is to output an instance x such that C(x) ̸= L(x). The complexity of these refuter problems are closely
related to the provability of complexity lower bounds [CLO24, LLR24].

Such refuter problems are often in TFZPP: In fact, if L is average-case hard against C (and both C and L
are in polynomial-time), then Refuter(L ̸∈ C ) ∈ TFZPP as the algorithm for the refuter problem can repeatedly
sample inputs from the hard distribution until it finds a solution x where C(x) ̸= L(x). Even though average-case
lower bounds against AC0[p] circuits have been proved for nearly 40 years [Raz87, Smo87], we are not aware of
any non-trivial TFNP upper bound for the problem Refuter(MAJ ̸∈ AC0[2]).

Another example is when L = search-SAT and C is the family of polynomial-size circuits: Given a circuit C
attempting to solve search-SAT, the refuter problem asks to find a formula φ (along with a satisfying assignment
a of φ) such that C(φ) fails to satisfy φ. The complexity of this problem is of significant interest to the bounded
arithmetic community [Kra95, Bus97, Pic15, PS23] as its hardness would imply the unprovability of NP ̸⊆ P/poly.
However, this problem is in TFZPP under the existence of one-way functions against non-uniform adversaries,
hence it is unclear how its complexity sheds light on the aforementioned unprovability question.

Finally, an additional motivation for studying TFZPP is its connection to Avoid and APEPP
(the class of total search problems mapping reducible to Avoid [KKMP21]): it is the “projection”
of Avoid to TFNP in the following sense:

Theorem 1.3. TFZPP = TFNP ∩ APEPP.
2This was observed by Jeřábek [Jeř16]; in his terminology, we have TFRP = TFZPP.
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Our Contributions.
In this work, we initiate a formal study of TFZPP as a class of total search problems. Analogous
to the setting of decision problems, we expect that TFZPP = FP. Indeed, this follows from the
same assumption used in [IW97]—namely that E requires circuits of exponential size. Moreover,
TFZPP = FP appears to be weaker than a full derandomization of BPP.

However, we show that this is not the case in the black-box setting in a very strong sense. In the
black-box setting one only has access to the input via an oracle; black-box classes are denoted by a
dt superscript (for “decision trees”). We say that a TFNPdt class is uniformly generated if it has a
complete problem R = {Rn}n∈N such that there is a Turing Machine which on input 1n outputs Rn

in polynomial time. Note that all of the major TFNPdt subclasses in the literature are uniformly
generated. Under the assumption that NP is not in quasi-polynomial time (QP), we show that no
uniformly generated TFNPdt class contains TFZPPdt.

Theorem 1.4. TFZPPdt ̸⊆ C for every uniformly generated class C ⊆ TFNPdt, unless NP ⊆ QP.

To prove these separations, we employ a close connection between total search problems and
proof complexity [BCE+98, GKRS19, BFI23, FIM25]. This connection shows that, in the black-box
setting, a search problem belongs to a class if and only if an associated proof system can prove
the totality of that search problem. In this case, we say that the class is characterized by that
proof system. To prove our separations, we first show that TFZPPdt is characterized by the random
tree-like resolution proof systems of Buss et al. [BKT14].

Theorem 1.5. TFZPPdt is characterized by random tree-like resolution.

More generally, we show that if a class C of total search problems is characterized by a proof
system Π, then the class of problems that are efficiently randomized reducible to a complete problem
in C is characterized by the proof system random Π. Theorem 1.4 then follows by combining the
following two results: (1) Buss et al. [BFI23] showed that every uniformly generated TFNP class
has a characterizing proof system, and (2) Pudlák and Thapen [PT19] showed that a propositional
proof system simulating random tree-like resolution would imply faster algorithms for NP.

A Highly Unsatisfiable Cook-Reckhow Program. Theorem 1.4 is striking as it suggests that TFZPP
problems can be arbitrarily hard in the black-box model. This motivates an interesting direction
of research: find explicit TFZPP problems that are hard for stronger and stronger subclasses of
TFNPdt. By the close connection between TFNPdt and proof complexity [BFI23], this can be seen as
a Cook-Reckhow program for highly unsatisfiable formulas: for increasingly more expressive proof
systems, exhibit a highly unsatisfiable CNF formula which is hard for that system.

Towards this program, we provide explicit separations of TFZPPdt from every major TFNP class
defined in the 1990s [JPY88, Pap94]. Note that all those TFNP classes are contained in PLS, PPP,
and PPA. The separation from PPA was shown by Beame et al. [BCE+98]. Leveraging the recent
work of Hopkins and Lin [HL22], we are able to show the following.

Theorem 1.6. There are explicit (polynomial-time constructable) problems in TFZPPdt which are
not in either PPPdt or PLSdt.

A TFZPP Zoo.
We now turn to studying the structure of problems inside of TFZPP. Figure 1 shows the zoo of
problems within TFZPP that we consider, as well as their relationships.
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Section 4
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Figure 1: The TFZPP zoo.

Like ZPP, TFZPP is a semantic class and therefore it is unlikely to admit complete problems
unless FP = TFZPP. However, we observe an interesting phenomenon: almost every TFZPP problem
that has been studied in the literature is reducible to Lossy-Code!3 This raises the question: are
there “natural” TFZPP problems which are not reducible Lossy-Code in the black-box setting,
and what do they look like? Theorem 1.4 and Theorem 1.6 already provide examples of problems
that are not reducible to Lossy-Code; however, we do not consider these problems natural—we
are looking for problems that would be studied outside of the context of proving such separations.

While we are unable to resolve this question—indeed, many of our conjectured separating
examples turned out to be reducible to Lossy-Code in surprising ways!—we provide natural
TFZPP problems which we conjecture witness a separation, and which we believe are of independent
interest. As well, we show several surprising reductions to Lossy-Code.

Nephew. Our primary candidate is the following.
3One exception is the Bertrand–Chebyshev problem for which it is not known whether it is reducible to Lossy-Code.

However, it is unclear how to define the Bertrand–Chebyshev problem in the black-box model, and we are unable to
separate any natural black-box TFZPP problem from Lossy-Code.
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Nephew. Given a set V of vertices and two functions f : V → V and g : V → V . Think of f(v)
as the father of v and g(v) as the nephew of v. A solution is one of the following.
s1. v ∈ V such that f(f(g(v))) ̸= f(v) (your nephew’s grandparent is not your parent)
s2. v ∈ V such that f(g(v)) = v (you are your nephew’s parent)

It may not be immediately obvious that Nephew is a total search problem. A proof may be
found in the textbook of Börger, Grädel, and Gurevich [BGG01, Proposition 6.5.5]; we sketch the
argument here. Create a directed graph Gf with vertex set V and with an edge from u to v if
f(u) = v. Then one can assign to each vertex a “level” that represents its distance to the core4 of
Gf . Let v∗ be a vertex with maximum level ℓmax. However, if v∗ is not a solution to Nephew, it
must be that g(v∗) has level ℓmax + 1, a contradiction. A similar intuition will be used in Section 4
for other proofs involving Nephew.

Nephew is derived from the minimal axioms of infinity in model theory. One method for
constructing a total search problem is to begin with a sentence in logic that has an infinite model
but no finite model. Such a sentence is known as an axiom of infinity, since any model for it must be
infinite. Axioms of infinity are classified under the number of quantifiers and predicate and function
symbols of certain arity that they contain, and there are 10 minimal classes ([BGG01, Theorem
6.5.4]). Each of these classes corresponds to a total search problem, and in most cases, this problem
is complete for a well-known TFNP class. The only exception is the one to which Nephew belongs;
Nephew can be interpreted as the Herbrandization of

∀x∃y (F (F (y)) = F (x) ∧ F (y) ̸= x) . (1)

The proof that Nephew belongs to TFZPP is highly non-trivial. Furthermore, our best upper
bound on the complexity of Nephew is that it is contained within PWPP, the problems reducible
to the weak pigeonhole principle, a relaxation of the Lossy-Code problem.

Theorem 1.7. Nephew ∈ TFZPP ∩ PWPP.

To obtain evidence that Nephew is not reducible Lossy-Code, we attempt to isolate the
potential hardness in Nephew. In doing so, we define a number of natural problems in TFZPP
which may be of independent interest.

The proof that Nephew is in TFZPP proceeds by reducing it to the observation that a leaf in
a binary tree can be found in logarithmic time in expectation. We define a total search problem
whose membership in TFZPP formalizes this observation.

Empty-Child. Given a set V of vertices and three functions F, L, R : V → V , where F (u) is the
father of u, and L(u), R(u) are the left and the right child of u respectively, a solution is one
of the following.
s1. u ∈ V such that F (L(u)) ̸= u or F (R(u)) ̸= u or L(u) = R(u) ̸= u; (Empty child)
s2. 1, if L(1) = 1 or R(1) = 1 or F (1) ̸= 1. (Wrong root)

Surprisingly, Empty-Child is equivalent to Lossy-Code under decision tree reductions, denoted
=dt. Thus, if Nephew is indeed not reducible to Lossy-Code, the hardness of Nephew does not
come from this portion of the reduction.

Theorem 1.8. Empty-Child =dt Lossy-Code.
4We intentionally leave “core” undefined for this brief sketch.
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As a warm-up to the techniques needed to prove this theorem, we consider a variant of
Empty-Child which includes an additional “height” function that outputs the height of a given node
in the tree. We show that this is a complete problem for the class LOSSY ∩ PLS = LOSSY ∩ SOPL,
where LOSSY is the class of problems efficiently reducible to Lossy-Code. The proof resembles
previous intersection theorems from TFNP [FGHS23, GHJ+24].

Then, we use Empty-Child as an intermediate problem to study the relationship between
Nephew and Lossy-Code.

Theorem 1.9. Empty-Child ≤dt Nephew.

Thus, combining with Theorem 1.8, we have Lossy-Code reduces to Nephew.

AM-GM Lossy-Code. One of our original (and failed) candidates for separation from Lossy-Code
was a problem called AM-GM Lossy-Code, obtained by combining Lossy-Code itself with the
AM-GM Inequality: a+b

2 ≥
√

ab. This problem was inspired by the Bad 2-Coloring problem
in [PPY23]: Given an undirected graph G = (V, E) with |V | = 2N vertices and |E| = N2 + 1
edges along with a 2-coloring C : V → {0, 1} of V , find an edge (x, y) ∈ E that is not colored
properly. This problem is total exactly because of the AM-GM inequality: suppose there are a black
vertices and b = 2N − a white vertices and every edge is colored properly, then there are at most
ab ≤

(
a+b

2

)2
= N2 edges, contradicting |E| > N2.

To compose this problem with Lossy-Code, we need to make two adaptations: First, to put it
inside TFZPP, the number of edges needs to be much larger than N2, say (1 + ε)N2; second, we are
given a function F from [(1 + ε)N2] to the set of properly colored edges and its purported inverse G
and we need to find x ∈ [(1 + ε)N2] such that G(F (x)) ̸= x. We arrive at the following problem:

c-AMGM-LC. Let c > 1 be a constant, V := [2N ] and P := [c · N2]. The input is a coloring
function C : V → {0, 1} and two mappings F : P → V × V , G : V × V → P . Let
H := C−1(0)× C−1(1). The goal is to find solutions of either type:

s1. a pigeon x ∈ P such that G(F (x)) ̸= x; (Wrong Encoding-Decoding)
s2. a pigeon x ∈ P such that F (x) /∈ H; (Invalid Hole)

Indeed, it seems unclear how to massage a Lossy-Code instance of the shape [cN2] ⇌ H into
a standard Lossy-Code instance of the form [2M ] ⇌ [M ], even though the AM-GM inequality
implies that cN2 ≫ |H|. However, it turns out that such a reduction is possible (although highly
non-trivial)! We encourage the reader to take a moment to think about how to reduce AMGM-LC
to Lossy-Code.

Theorem 1.10. For every constant c > 1, c-AMGM-LC ≤dt Lossy-Code.

Our reduction goes through bounded arithmetic: We formalize the totality of c-AMGM-LC in
Jeřábek’s theory APC1 [Jeř07a], and Wilkie’s witnessing theorem for APC1 [Tha02, Jeř04] implies a
reduction from c-AMGM-LC to Lossy-Code. In particular, like every formalization in APC1, our
reduction makes use of the Nisan–Wigderson generator [NW94].

Moreover, the techniques underlying APC1 [Jeř07a] allow us to reduce problems to Lossy-Code
in a systematic way; we provide two additional examples later (c-Dual-AMGM-LC in Section 6.2.2
and a problem capturing the Inclusion-Exclusion principle in Section 6.2.3). A secondary goal of
expounding these reductions is to introduce the ideas of APC1 to audiences who are less familiar
with bounded arithmetic.
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Remark 1.11. Unfortunately, it seems unclear how to formalize the totality of Nephew in APC1,
hence the bounded arithmetic approach does not seem to provide a reduction from Nephew to
Lossy-Code. For example, our proof that Nephew ∈ TFZPP requires reasoning about the level
of each node, which seems to be global reasoning that is infeasible in APC1.

Linear Ordering. Finally, we consider one more natural problem in TFZPP. The Linear Or-
dering Principle has a storied history in proof complexity [Kri85, BG01, Pot20] and bounded
arithmetic [CK98, Han04, BKT14, AT14]. It has been studied in the context of total search prob-
lems as well [KP24, HV25], where it was used in order to construct new algorithms for Avoid.
A line of works in proof complexity [Rii01, AD08, Gry19, CdRN+23] has also considered a dense
variant of this problem defined as follows, which lies in TFZPP.

Dense-Linear-Ordering. The input consists of the descriptions of a linear ordering ≺ over
N elements and a median function med : [N ] × [N ] → [N ]. Without loss of generality, we
may assume that for x ̸= y ∈ [N ], exactly one of (x ≺ y) and (y ≺ x) is true, and that
med(x, y) = med(y, x). (That is, ≺ is represented by a string of

(N
2

)
bits and med is represented

by a list of
(n

2
)

elements in [N ].) A solution is one of the following.
s1. x, y, z ∈ [N ] such that x ≺ y, y ≺ z, and z ≺ x; or (Transitivity violation)
s2. x, y ∈ [N ] such that x ≺ y, but neither x ≺ med(x, y) nor med(x, y) ≺ y. (Invalid median)

While Avoid reduces to the Linear Ordering Principle [KP24], we show a converse in the dense
setting.

Theorem 1.12. Dense-Linear-Ordering ≤dt Lossy-Code.

2 Preliminaries
2.1 Basics of TFNP
TFNP contains all search problems which are (i) total: a solution is guaranteed to exist, and (ii) in
NP: there is an efficient procedure to check whether a candidate solution is valid. It is believed
that TFNP does not admit complete problems [Pud15] and much of the research in this area has
focused on studying syntactic subclasses (those with complete problems) which capture many of the
total search problems of interest. These classes are typically defined by simple existence principles
that capture the totality of the problems within that class. These naturally give rise to total search
problems. For example, PWPP is the class of all search problems whose totality is witnessed by the
existence principle: any map from 2N to N must have a collision [Jeř16]. To make these problems
non-trivial, the input is presented succinctly as a circuit C that on input i outputs the i-th bit
of the search problem. For example, the existence principle for PWPP gives rise to the following
(white-box) total search problem.

Weak-Pigeon. Given P : {0, 1}n → {0, 1}n−1, a solution is x ̸= y such that P (x) = P (y).

PWPP is then the class of all total search problems which are efficiently reducible to Weak-Pigeon.
A major thrust of this line of work is to understand the relationships between these classes.

However, a separation between classes would imply P ̸= NP. As a proxy, and as natural objects
in their own right, researchers have studied total search problems in the black-box model. In this
setting, the input C is given as a black box which can be queried, but we no longer have access to
the description of C.
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In this setting a (query) search problem is a sequence of relations Rn ⊆ {0, 1}n ×On, for each
n ∈ N. It is total if for every x ∈ {0, 1}n there is o ∈ On such that (x, o) ∈ Rn. We think of
the input x ∈ {0, 1}n as being accessed by querying the individual bits, and we will measure the
complexity of solving Rn as the number of bits that must be queried to determine some suitable
o ∈ On. An efficient algorithm is one that makes at most poly(log n)-many queries5; these problems
belong to the class FPdt, where dt indicates that it is the black-box version of the class. Similarly,
R ∈ TFNPdt if for every n ∈ N and each o ∈ On there exists a poly(log n)-depth decision tree
To : {0, 1}n → {0, 1} such that To(x) = 1 iff (x, o) ∈ Rn. While search problems are formally defined
as a sequence R = (Rn)n∈N, we will often want to speak about individual members of this sequence.
For readability, we will abuse notation and refer to elements Rn in the sequence as total search
problems. Furthermore, we will often drop the subscript n and rely on context to differentiate.

We compare the complexity of total search problems by reductions between them; the following
is the black-box (decision tree) analogue of a deterministic polynomial-time reduction between
search problems.

Definition 2.1. For total search problems R ⊆ {0, 1}n × On and S ⊆ {0, 1}m × O′
m, there is an

S-formulation of R if for every i ∈ [m] and o ∈ O′
m there are functions fi : {0, 1}n → {0, 1} and

go : {0, 1}n → On such that

(f(x), o) ∈ S) =⇒ (x, go(x)) ∈ R, (2)

where f(x) := (f1(x), . . . , fm(x)). The depth of the S-formulation is

d := max
(
{depth(fi) : i ∈ [m]} ∪ {depth(go) : o ∈ O′

m}
)

,

where depth(f) denotes the minimum depth of any decision tree which computes f . The size of the
S-formulation is m, the number of input bits to S. The complexity of an S-formulation is log m + d
and the complexity of reducing R to S is the minimum complexity of any S-formulation of R.

This definition extends to sequences naturally. If S = (Sn) is a sequence and Rn is a single
search problem, then the complexity of reducing Rn to S is the minimum over m of the complexity
of reducing Rn to Sm. For two sequences S = (Sn) and R = (Rn), the complexity of reducing R to
S is the complexity of reducing Rn to S for each n. We say that a reduction from R to S is efficient
if its complexity is poly(log(n)) and denote this by R ≤dt S.

2.2 TFZPP
In this work, we will be particularly interested in the total search problems which are solvable in
randomized polynomial time. Formally, R ⊆ {0, 1}∗ × {0, 1}∗ ∈ TFZPP if there is a distribution D
over polynomial-time Turing Machines A with range {0, 1,⊥}, such that PrA∼D[A(x) = ⊥] ≤ 1/3
and

TFZPP is defined semantically and it is unlikely to have complete problems. However, we show
that it is exactly the TFNP problems in the TFΣP

2 class APEPP, where APEPP is the class of total
search problems that are reducible to Avoid, as defined in [KKMP21].

Theorem 1.3. TFZPP = TFNP ∩ APEPP.

Proof. Let L ∈ TFNP ∩ APEPP. This means that given an instance x of L, there are deterministic
polynomial-time algorithms V , C, and R, such that:

5As the input is succinctly encoded, this corresponds to looking at a polynomial part of the entire input.
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• V is a TFNP verifier for L. For every string z of length polynomial in |x|, V (x, z) = 1 if and
only if z is a valid solution for x.

• (C, R) is a reduction from x to Avoid. The output of C(x) is a circuit Cx mapping ℓ input
bits to ℓ + 1 output bits, where ℓ ≤ poly(|x|); given any y ∈ {0, 1}ℓ+1 \ Range(Cx), R(x, y)
outputs a valid solution for x.

Then we can solve L in TFZPP via the following procedure. Guess y ∈ {0, 1}ℓ+1 uniformly at
random and compute z := R(x, y). If V (x, z) accepts, then we output z; otherwise, we output ⊥.
By the correctness of V , if we did not output ⊥, then our output is a valid solution of x. On the
other hand, since at least a 1/2 fraction of strings y ∈ {0, 1}ℓ+1 are valid outputs of Avoid on the
instance Cx, by the correctness of (R, C), we will output a valid solution w.p. at least 1/2.

Now we prove the converse direction. If L ∈ TFZPP then clearly L ∈ TFNP; hence we only
need to show that there is a mapping reduction from L to Avoid. Let U(x, r) be the zero-error
randomized algorithm for L, i.e., U(x, r) outputs a valid solution for x w.p. at least 1/2 over its
randomness r, and it outputs ⊥ whenever it fails to output a valid solution.

By standard results in derandomization [NW94, IW97, Uma03], there exist absolute constants
c, d ≥ 1 and a deterministic polynomial-time algorithm PRG such that the following holds. For
every truth table f of length s10c, if the circuit complexity of f is at least sc, then PRG(f) outputs a
list of sd strings that (1/s2)-fools every size-s2 circuit. That is, for every circuit C : {0, 1}s → {0, 1}
of size at most s2, ∣∣∣∣∣ Pr

x∼{0,1}s
[C(x) = 1]− Pr

x∼PRG(f)
[C(x) = 1]

∣∣∣∣∣ ≤ 1/s2.

Now, let s ≤ poly(|x|) be the circuit complexity of U . Consider the truth table generator TT :
{0, 1}O(sc log s) → {0, 1}s10c that takes the description of a size-sc circuit C : {0, 1}10c log s → {0, 1}
as input and outputs the length-s10c truth table of C. We treat TT as an instance for Avoid and
reduce x to TT.6

It remains to show how to solve the instance x deterministically given a non-output of TT. Note
that if f ∈ {0, 1}s10c is a non-output of TT, then the circuit complexity of f is at least sc, hence
PRG(f) outputs a list of poly(s) strings that (1/s2)-fools every size-s2 circuits. This implies that

Pr
r∼PRG(f)

[U(x, r) ̸= ⊥] ≥ Pr
r∼{0,1}s

[U(x, r) ̸= ⊥]− 1/s2 ≥ 1/2− 1/s2 > 0,

and in particular, there exists at least one string r ∈ PRG(f) such that U(x, r) ̸= ⊥. We can solve
the instance x by cycling through every r ∈ PRG(f) and outputting U(x, r) whenever we encounter
such a good r.

Note that this equivalence holds even in the black-box model, since its proof is relativizing.

Definition 2.2 (TFZPP). A total NP search problem R ⊆ {0, 1}∗ × {0, 1}∗ is in TFZPP if there is a
distribution D over polynomial-time algorithms A with output in {0, 1,⊥} such that:

1. For every x ∈ {0, 1}∗ and every A ∼ D, if A(x) ̸= ⊥ then (x, A(x)) ∈ R,
2. For every x ∈ {0, 1}∗,

Pr
A∼D

[A(x) =⊥] ≤ 1/3.

Similarly, R ∈ TFZPPdt if there is a family of distributions D = {Dn}n∈N over poly log(n)-depth
decision trees with leaves labeled in {0, 1,⊥}, where on input x we sample a decision tree A ∼ D|x|,
and D satisfies (1) and (2).

6An unusual aspect of this reduction is that TT does not depend on x!
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2.3 Lossy-Code

As mentioned in the introduction, Lossy-Code is the Herbrandization of Avoid. Let N < M
be two parameters (think of N ≪ M), (the black-box version of) Lossy-Code is the following
problem:

Lossy-CodeN→M . Given query access to a pair of functions f : [N ]→ [M ] and g : [M ]→ [N ],
find x ∈ [M ] such that f(g(x)) ̸= x.

We need the following basic fact about Lossy-Code that roughly states that the “stretch
function” of Lossy-Code does not influence its complexity as long as it is in the “weak” regime.
This fact and similar statements for other variants of the weak pigeonhole principle have been
very useful in bounded arithmetic [PWW88, Tha02, Kra04, Jeř04, Jeř07a, CLO24], total search
problems [Kor21, Kor22, LLR24], and cryptography [GGM86, Mer87].

Lemma 2.3. Let ε > 0 and M > (1 + ε)N . There is a decision tree reduction of complexity
O(ε−1 log(M/N)) from Lossy-CodeN→(1+ε)N to Lossy-CodeN→M .

By Lemma 2.3, Lossy-CodeN→1.01N , Lossy-CodeN→2N , and Lossy-CodeN→N100 are equiv-
alent up to decision tree reductions of polylog(N) depth. In this paper, unless otherwise stated,
Lossy-Code always stands for Lossy-CodeN→2N .

We denote LOSSY as the class of total search problems reducible to Lossy-Code.7 It follows
from Lemma 2.3 that LOSSY is robust in the sense that it does not matter whether it is defined
using Lossy-CodeN→1.01N or Lossy-CodeN→N100 as the complete problem. In fact, LOSSY is
extremely robust: it is closed under Turing reductions (FPLOSSY = LOSSY [BJ12, LPT24]) and it is
self-low (LOSSYLOSSY = LOSSY [GL25]).

We will also consider the bijective version of Lossy-Code, called Bij-Lossy-Code. Let N < M ,
define:

Bij-Lossy-CodeN→M . Given query access to a pair of functions f : [N ]→ [M ] and g : [M ]→
[N ], find either x ∈ [M ] such that f(g(x)) ̸= x, or y ∈ [N ] such that g(f(y)) ̸= y.

Clearly, Bij-Lossy-CodeN→M reduces to Lossy-CodeN→M . We also use Bij-Lossy-Code
to denote Bij-Lossy-CodeN→2N by default. It is not difficult to see that the “strong” versions of
these problems, Lossy-CodeN→N+1 and Bij-Lossy-CodeN→N+1, are complete for PPADS and
PPAD respectively.

3 Randomized Proof Complexity and Explicit Separations
We begin by describing the connection between black-box TFZPP and proof complexity, and how
this can be leveraged to obtain explicit separations from other natural classes. Proof complexity is
concerned with the efficient provability of propositional theorems (unsatisfiable CNF formulas) in
various proof systems—simply a verifier for the language UNSAT of unsatisfiable CNF formulas.

Definition 3.1. A propositional proof system is a polynomial-time machine P such that for every
CNF formula F , F ∈ UNSAT iff there exists a proof Π ∈ {0, 1}∗ such that P(F, Π) = 1. We say
that Π is a P-proof of F and define the size of Π to be s(Π) := |Π|.

When studying connections between proof systems and TFNP classes, it is standard to also
consider an associated notion of the width of a proof w(Π). This is typically specific to the proof

7Previous literature [LPT24, CLMP25] defined LOSSY as the class of decision problems reducible to Lossy-Code.
In our context, it is more natural to define LOSSY as a class of total search problems.
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system—for example, in resolution (defined next), it is the maximum number of literals in a clause
in Π, while for algebraic systems such as Sum-of-Squares, the width is the degree of the polynomials
occurring in the proof.

With a definition of width, the complexity of proving F in P is

P(F ) := min
P-proof Π of F

w(Π) + log s(Π).

A standard example is the resolution proof system. A resolution proof of an unsatisfiable CNF
formula F consists of a sequence of clauses C1, . . . , Ct = ∅ ending with the empty clause which
contains no literals, such that each clause Ci either belongs to F or is derived from earlier clauses in
the sequence according to the resolution rule.

Resolution rule: From two clauses with complementary literals A ∨ x and B ∨ x, derive A ∨B.

The size of a resolution proof is the number of clauses that it contains, while the width is the
maximum number of literals within any clause in the proof. A resolution proof C1, . . . , Ct is tree-like
if each Ci is used at most once as a premise for the resolution proof. They are named as such
because the implication graph of such proofs is a tree.

There is a long line of work connecting proof complexity and black-box TFNP [BCE+98, GKRS19,
GHJ+22, BFI23, FIM25, HKT24, Tha24, DR23, LPR24, FGPR24]. These connections show that a
total search problem is contained within a class iff an associated proof system can prove the totality
of that search problem. We can phrase the totality of any total search problem R ⊆ {0, 1}n ×O as
an unsatisfiable CNF formula in the following way: for each o ∈ O let Vo be a decision tree which
checks whether o is a solution; that is, Vo(x) = 1 iff (x, o) ∈ R. A root-to-leaf path in Vo is a 1-path
if its leaf is labeled 1. We will associate with any path p the conjunction of literals that it follows.
Then the totality of R is expressed as

FR := ¬

 ∨
o∈O

∨
1-path p∈Vo

p

.

If R ∈ TFNPdt then Vo can be assumed to have depth poly log(n), and hence the width of FR is
also poly log(n).

Similarly, we can associate with any unsatisfiable CNF formula F = C1 ∧ . . . ∧ Cm a total
search problem SearchF ⊆ {0, 1}n × [m] such that (x, o) ∈ SearchF iff Co(x) = 0. Observe that
whenever F has poly(log(n)) width then SearchF ∈ TFNPdt and furthermore that SearchFR

is
reducible to R by decision trees of depth at most the width of FR.

For a syntactic class C ⊆ TFNPdt we will denote by C(R) the complexity of reducing R to S,
where S is any complete problem for C. We say that a proof system P is characterized by a class
C ⊆ TFNPdt if R ∈ C iff P(F ) = poly(C(R)). A standard example is that FPdt characterizes tree-like
resolution. Said differently, decision trees are equivalent to tree-like resolution proofs.

We extend these characterizations to capture randomized reductions. We show that randomized
reductions between total search problems give rise to proofs in randomized proof systems, a notion
introduced by Buss, Kołodziejczyk, and Thapen [BKT14].

Definition 3.2. Let P be any propositional proof system. A randomized P-proof, denoted rP , of an
unsatisfiable formula F is a distribution D supported on pairs (Π, B), such that

1. Each B is a CNF formula over the variables of F ,
2. Π is a P proof of F ∧B,

13



3. For any assignment x ∈ {0, 1}n, Pr(Π,B)∼D[B(x) = 1] ≥ 2/3.

The size s(D), and width w(D) of an rP-proof D is the maximum width and size of a proof Π in
the support of D. The complexity of proving F in rP is

rP(F ) := min
rP−proof D of F

w(D) + log s(D)

Note that a randomized proof system is not a Cook-Reckhow proof system in the sense of
Definition 3.1 since its proofs typically cannot be polynomial-time verified [PT19].

The main theorem of this section, Theorem 3.4, shows that a proof system P is characterized by
class C iff the totality of the total search problems R which are randomly reducible to any complete
problem for C is provable in rP . The following definition is equivalent to the probabilistic reduction
in [Jeř16].

Definition 3.3. A randomized (ZPP) reduction from a search problem S ⊆ [t]×O to R ⊆ [n]×Q is
a distribution D over deterministic reductions T = (T, {To}) such that each output decision tree is
labeled either by some j ∈ O or by ⊥, and D satisfies

1. For every x ∈ [t] and every T ∼ D, if (T (x), o) ∈ R then either To(x) = ⊥ or (x, To(x)) ∈ S.
2. For every x ∈ [t],

Pr
T ∼D

[∃o ∈ O : (T (x), o) ∈ R ∧ To(x) = ⊥] ≤ ε

Theorem 3.4. If a proof system P is characterized by the total search problems reducible to
R ∈ TFNPdt, then rP is characterized by the total search problems that are randomized-reducible
to R.

The intuition for this theorem is most clear in the case of randomized reductions to FPdt (which
is TFZPPdt) and random tree-like resolution. This is also the case that we will use to derive
consequences about TFZPPdt. We leave the proof of Theorem 3.4 to the Appendix B.

We remark that Theorem 3.4 reduces the task of showing that a TFNP class is closed under
randomized reduction to showing that the corresponding proof system is closed in the sense that
P = rP. We are not aware of any such proof system, and it would be interesting to exhibit one.

Lemma 3.5. There is a quasi-polynomial size random tree-like resolution proof of F = C1 ∧ . . .∧Cm

iff SearchF ∈ TFZPPdt.

Proof. Suppose that SearchF ∈ TFZPPdt and let D be a distribution over depth-d decision trees
solving SearchF as in the definition of TFZPPdt. We construct a ε-error randomized tree resolution
proof P, which is defined by the following sampling procedure:

1. Sample T ∼ D.
2. Let B be the set of clauses obtained by taking the negation of each root-to-leaf path in T

ending in ⊥,
B := {¬p : p ∈ T is a root-to-⊥ path},

where we think of a path as the conjunctions of the literals that appear along it (a queried
variable is a positive literal if p took the 1-branch, and a negative literal if p took the 0-branch).

3. To construct Π, we will use the equivalence between a decision tree solving the false-clause
search problem and tree-resolution proofs. Let T ∗ be obtained from T by relabeling each
path p ending in ⊥ by the clause ¬p ∈ B. Let F ∪ B be the CNF formula whose clauses
are the clauses of F and those in B, and observe that T ∗ is a depth-d decision tree solving
SearchF ∪B. Thus, there is a depth-d tree resolution proof Π of F ∪B.
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As B states that we do not follow any root-to-⊥ path in T , for any x ∈ {0, 1}n, T (x) ̸= ⊥ iff x
satisfies all of B. Therefore, PrT ∼D[T (x) = ⊥] ≤ ε implies that Pr(B,Π)∼P [B(x) = 1] ≥ 1 − ε for
every x ∈ {0, 1}n.

In the other direction, suppose that P is a ε-random tree resolution proof of F with complexity
c. We construct a distribution D over decision trees solving SearchF by the following sampling
procedure:

1. Sample (Π, B) ∼ P.
2. Let T ∗ be the depth-d decision tree solving SearchF ∪B obtained from Π obtained by the

equivalence between tree resolution proofs and decision trees in the same manner as in point
(3) above. It is well-known that the depth of a resolution proof is bounded by its width, and
hence T ∗ has depth at most c.

3. Let T be the decision tree obtained from T ∗ by relabeling each leaf of Π that is labeled by a
clause in B by ⊥.

As for any x ∈ {0, 1}n, Pr(B,Π)∼D[B(x) = 1] ≥ 1− ε, we have that PrT ∼D[T (x) = ⊥] ≤ ε.

3.1 Separations
We now use Lemma 3.5 to show that TFZPPdt is not contained within any uniformly generated
TFNPdt class unless NP is contained within quasi-polynomial time (QP).

Theorem 3.6. TFZPPdt ̸⊆ C for any uniformly generated class C ⊆ TFNPdt unless NP ⊆ QP.

This theorem follows by combining the characterization of uniform TFNPdt classes by proof
systems of Buss et al. [BFI23], Lemma 3.5, and the following result of Pudlák and Thapen [PT19].

This separation relies on a theorem of Pudlák and Thapen [PT19] who showed that random
resolution cannot be simulated by any propositional proof system unless P ̸= NP. A straightforward
examination of their theorem reveals that it also holds for tree-like resolution and can be stated in
the following form.

Theorem 3.7 (Proposition 10 in [PT19]). There is a family of unsatisfiable 3-CNFs F such that:

1. There are O(log(n))-complexity random tree-like resolution proofs of F .
2. If there is a propositional proof system which has poly log(n)-complexity proofs of F then

NP ⊆ QP.

Indeed, to prove their theorem Pudlák and Thapen observe that random (treelike) resolution
has small proofs of any highly unsatisfiable formula (one for which any assignment falsifies many
clauses), and that the PCP theorem can be used to put any 3-CNF formula into this form (the
family F). Using this, they show that if there existed a propositional proof system which could
(quasi-polynomially) simulate random tree-like resolution, then one could use its variability to decide
SAT.

Combining this theorem with Lemma 3.5 and the characterization of TFNPdt classes by proposi-
tional proof systems due to Buss et al. [BFI23] proves Theorem 3.6. Say that R = {Rn} ∈ TFNPdt

is uniformly generated if there is a Turing Machine which on input 1n outputs Rn, and say that a
class is uniformly generated if it has a uniformly generated complete problem. Note that all major
TFNPdt subclasses are uniformly generated.
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Proof of Theorem 3.6. Let C be a uniformly generated class such that TFZPPdt ⊆ C. Buss et
al. [BFI23] showed that every uniformly generated TFNPdt subclass is characterized by a proof
system; let P be the system for C. Consider the family of formulas F from Theorem 3.7. As
TFZPPdt ⊆ C, there are poly log(n)-complexity P-proofs of F . Hence, Theorem 3.7 implies that
NP ⊆ QP.

3.2 Explicit Separations
The separating examples in Theorem 3.6 rely on an unproven hypothesis. We end this section by
proving explicit separations between TFZPPdt and every major TFNPdt subclass which do not rely
on any unproven assumptions. A separation of PPAdt from TFZPPdt was implicitly shown by Beame
et. al. [BCE+98], who proved Nullstellensatz lower bounds for Lossy-Code.8 The remaining major
TFNPdt classes are contained within PLSdt and PPPdt. We show the following.

Theorem 3.8. There exist explicit total search problems in TFZPPdt which are not contained in
PLSdt nor PPPdt.

It is known that if a total search problem SearchF is in PLSdt or PPPdt, then F has a small
low-degree Sum-of-Squares (SoS) proof; see [FKP19] for an exposition on this proof system. Our
hard instance is based on the recent work of Hopkins and Lin [HL22], who exhibited the first explicit
hard 3-XOR instance for SoS.

Theorem 3.9 ([HL22]). There exist constants µ1, µ2 ∈ (0, 1) and a polynomial time algorithm which,
given 1n as input, outputs a 3-XOR formula F = C1 ∧ · · · ∧ Cm on n variables such that:

• For every x ∈ {0, 1}n, Pri∼[m][Ci(x) = 1] ≤ 1− µ1.
• Any Sum-of-Squares refutation of F requires degree at least µ2n.

Proof of Theorem 3.8. Let F be as in Theorem 3.9. We show that R := SearchF satisfies the
desired properties. We first prove R ∈ TFZPPdt. Consider the following simple algorithm: sample
i ∼ [m] uniformly at random, and make three queries to check if Ci(x) = 0. If so, output i; otherwise,
output ⊥. By the first item of Theorem 3.9, the algorithm succeeds with probability at least µ1.
Repeating the procedure O(1/µ1) times boosts the success probability to at least 2/3.

To separate R from PPPdt and PLSdt, we only need to show there is no efficient black-box
reduction from R to a complete problem for one of these classes. If there was, then there would be
an efficient SoS proof of F , contradicting the second item of Theorem 3.9.

4 Nephew

Recall the Nephew problem, which is our main candidate for a total search problem in TFZPP but
not reducible to Lossy-Code:

Nephew. Given a set V of vertices and two functions f : V → V and g : V → V . Think of f(v)
as the father of v and g(v) as the nephew of v. A solution is one of the following.
s1. v ∈ V such that f(f(g(v))) ̸= f(v) (your nephew’s grandparent is not your parent)

8More specifically, Beame et. al. [BCE+98, Theorem 12] proved the Nullstellensatz degree lower bounds for
Weak-Pigeon. They also showed that any Nullstellensatz degree lower bounds for Weak-Pigeon implies the same
Nullstellensatz degree lower bounds for Lossy-Code in [BCE+98, Lemma 10] (see also Definition 3.1, 3.2 in [BCE+98]
for the definition of Lossy-Code and Weak-Pigeon).
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s2. v ∈ V such that f(g(v)) = v (you are your nephew’s parent)

The main result of this section is the inclusion theorem:

Theorem 1.7. Nephew ∈ TFZPP ∩ PWPP.

The intuition behind Theorem 1.7 is as follows:

• We can treat certain vertices in a Nephew instance like the root of a directed binary tree,
where the leaves of the tree correspond to solutions of the Nephew instance.

• Finding a leaf of a rooted binary tree is easy for both PWPP and TFZPP computations.

Once we have proven the above, we are nearly done. First, choose an arbitrary vertex. Perhaps
that vertex is one of the many that we can treat as the root of a binary tree, and so from it we can
find a solution. Otherwise, we use a procedure to find such a root vertex. In fact, we will be able to
find two vertices, one of which must be a good root vertex. To show inclusion in TFZPP, we just
need to pick one of these two randomly. For PWPP, we will have to consider both. We make an
adjustment to the argument for a single root vertex so that it works for two potential root vertices.

To be more concrete, we will reduce Nephew to the following promise search problem.

Leaf-of-Rooted-Tree. An instance consists of a set V of vertices, a special vertex v∗, and two
functions L : V → V ∪ {⊥} and R : V → V ∪ {⊥}. We define a subset V ∗ ⊆ V recursively:
v∗ ∈ V ∗ and, for every v ∈ V ∗, we add L(v) to V ∗ if L(v) ̸= ⊥ and R(v) to V ∗ if R(v) ̸= ⊥.
We promise that the induced subgraph on V ∗ is a (directed) tree rooted at v∗ and that for all
v ∈ V ∗ either:

• L(v) = R(v) = ⊥, or
• L(v) ̸= ⊥ and R(v) ̸= ⊥ and L(v) ̸= R(v).

A solution is a (⌈log |V |⌉ + 1)-length path, represented by a string p ∈ {L, R}⌈log |V |⌉+1,
where starting at v∗ and descending by the functions specified by the characters of p in order
will at some point reach a vertex v where L(v) = R(v) = ⊥.

Note that instead of simply asking for a leaf, we require a root-to-leaf path for a solution. This
is to confirm that the leaf is in the binary tree rooted at v∗.

Finding a root-to-leaf path in a rooted binary tree. It is easy for a PWPP or TFZPP computation
to find a solution to Leaf-of-Rooted-Tree. This follows from the simple observation that there
are (many) more paths of length (⌈log |V |⌉+ 1) than vertices in the tree, so most paths must be
solutions.

Lemma 4.1. A solution to Leaf-of-Rooted-Tree can be found with high probability using a
randomized algorithm.

Proof. The algorithm guesses a random path of length ⌈log |V |⌉+ 1, which will be a solution with
probability at least 5/6. This is because if a path p is not a solution, then following p reaches a
vertex vp with two children. The path p is the only non-solution path of length ⌈log |V |⌉ + 1 to
reach vp; furthermore, because V ∗ is an induced tree, no other path ends at a vertex with L(vp) or
R(vp) as children. This means that the set {vp, L(vp), R(vp)} are uniquely reached by p out of all of
the non-solution paths. Therefore, there are at least 3 times as many vertices in V as there are
non-solution paths. Let the fraction of non-solution paths be α. Then
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|V | ≥ 3α
∣∣∣{L, R}⌈log |V |⌉+1

∣∣∣ ≥ 3α · 2|V |,

and so α ≤ 1/6.

To show inclusion in PWPP, we reduce to the PWPP-complete problem Weak-Pigeon. (Note
that this is not a reduction between TFNP problems, as Leaf-of-Rooted-Tree is a promise
problem.) We recall its definition here:

Weak-Pigeon. Given h : {0, 1}n → {0, 1}n−1 a solution is x ̸= y such that h(x) = h(y).

Lemma 4.2. Leaf-of-Rooted-Tree reduces to Weak-Pigeon.

Proof. Let n = ⌈log |V |⌉+ 1. Let vp be the vertex reached by p if p is a non-solution path. Then
we define h as a map from (⌈log |V |⌉+ 1)-length paths to vertices:

h(p) =
{

vp if p is not a solution;
v∗ otherwise.

(Recall that since v∗ is the root, we have that vp ̸= v∗ for any path p.) Thus, paths (x, y) are
a collision if and only if x and y are both solutions to Leaf-of-Rooted-Tree, and so from any
collision we can find a solution to Leaf-of-Rooted-Tree by arbitrarily choosing one from the
pair.

The structure of Nephew instances and finding a rooted binary tree. For any Nephew instance
(V, f, g), let Gf be the directed graph with vertex set V and where (u, v) is an edge if and only if
v = f(u). Then Gf is a directed graph with out-degree one, and therefore the connected components
of Gf have a simple structure: they are composed of a cycle (perhaps a self-loop) and trees (with
edges oriented leaf-to-root) that are rooted at vertices in the cycle. For any vertex v ∈ V , define its
level (denoted ℓ(v)) as the distance from v to any vertex on the cycle of its connected component.
So, any vertex on the cycle has level 0, any non-cycle vertex pointing to a cycle vertex has level 1,
and so on. See Figure 2 for an illustration.

We give a reduction from Nephew to Leaf-of-Rooted-Tree under the assumption that we
can find a vertex v∗ with ℓ(v∗) ≥ 2. After proving this, the hard part will be finding such a vertex.
The main component of this reduction is the procedure Find-Children (Algorithm 1), which is
based on the functions f and g from an Nephew instance. Define CheckSol(u) to be the procedure
that returns True iff u is a solution to the Nephew instance, that is, iff f(f(g(u))) ̸= f(u) or
f(g(u)) = u.

Algorithm 1 Procedure Find-Childrenf,g(v)
1: h(v)← g(f(g(v))) ▷ Rename for notational brevity
2: if CheckSol(v) ∨ CheckSol (g(v)) ∨ CheckSol (f(g(v))) ∨ CheckSol (h(v)) then
3: return (⊥,⊥) ▷ We have found a solution, so we can stop here
4: else
5: return (g(v), h(v))

See Figure 3 for an illustration. The idea is to construct the tree by defining the left and right
children of v to be two nodes reachable from v, unless the procedure finds a nearby solution, in
which case we can make v into a leaf, as it is easy to compute a solution given v.
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3 3 2 1 1 1 1

3 2 1 0 0 0 0

3 3 2 1 0 0 3

0 0 1 0 0 1 2

Figure 2: An example Gf with levels marked.

fv

vfgv

gv hv

Figure 3: The procedure performed by Find-Childrenf,g(v). Solid arrows represent f and dashed arrows
represent g. Parentheses are omitted in labels. The dotted boxes indicate that vertices g(v) and h(v) will be
returned as the children of v. The procedure will check if the shaded vertices are Nephew solutions, and in
doing so will visit the unshaded vertices (but will not detect if these are solutions). Note that f(h(v)) = v is
possible, but f(h(v)) = f(g(v)) is not.
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Although the intuition behind the reduction is straightforward, some work needs to be done to
show that Find-Children gives a valid binary tree. The following properties will help.

Lemma 4.3. Let Find-Childrenf,g(v) = (a, b). If (a, b) ̸= (⊥,⊥), then

(i) a ̸= b,
(ii) f(a) ̸= f(b),
(iii) f(f(a)) = f(f(b)) = f(v), and
(iv) if ℓ(v) ≥ 2, then ℓ(a) = ℓ(b) = ℓ(v) + 1.

Proof.

(i) Since (a, b) ̸= (⊥,⊥), we have that f(g(v)) = f(a) is not an Nephew solution, and in
particular f(g(f(a))) ̸= f(a). This means that a ̸= b, as b = g(f(a)).

(ii) As f(g(v)) is not a solution, applying f(g(u)) ̸= u to u = f(g(v)) gives f(b) = f(g(f(g(v)))) ̸=
f(g(v)) = f(a).

(iii) As v is not a solution, f(f(a)) = f(f(g(v))) = f(v). As f(g(v)) is not a solution, applying
f(f(g(u))) = f(u) for u = f(g(v)) gives f(f(b)) = f(f(g(f(g(v))))) = f(f(g(v))) = f(v).

(iv) Under the assumption that ℓ(v) ≥ 2, we know that ℓ(f(v)) = ℓ(v)− 1 > 0, which implies that
any vertex with f(f(u)) = f(v) has ℓ(u) = ℓ(f(v)) + 2 = ℓ(v) + 1. By Item (iii), this applies
to a and b.

Remark 4.4. Lemma 4.3 (iv) does not hold without the hypothesis ℓ(v) ≥ 2, as if ℓ(f(v)) = 0 there
is no guarantee that vertices with edges pointing to f(v) have level greater than 0. This is why it is
necessary to assume ℓ(v∗) ≥ 2 for the simple reduction given here.

Lemma 4.5. Let (V, f, g) be an instance of Nephew. Then define L and R by

(L(v), R(v))← Find-Childrenf,g(v).

Given v∗ ∈ V with ℓ(v∗) ≥ 2, (V, v∗, L, R) is a valid instance to Leaf-of-Rooted-Tree.

Proof. All we need to show is that v∗ is the root of an induced tree. Recall that V ∗ denotes the set
of vertices reachable from v∗ via L and R (i.e., using edges of the form (u→ L(u)) and (u→ R(u))).
By Lemma 4.3 (iv), the induced subgraph on V ∗ can be assigned levels such that edges are directed
only from lower levels to higher levels, i.e. it is a DAG. By Lemma 4.3 (i), the DAG has outdegree 2.
To prove this induced DAG is indeed a tree, it suffices to show that no two vertices share the same
child. Indeed, if there are vertices u, u′ ∈ V ∗ such that {L(u), R(u)} ∩ {L(u′), R(u′)} ̸= ∅, then by
Lemma 4.3 (iii), we have f(u) = f(u′). Hence, it suffices to prove the following claim:

Claim 4.6. If u, u′ ∈ V ∗ are two different vertices, then f(u) ̸= f(u′).

Proof of Claim 4.6. We may assume that ℓ(u) = ℓ(u′), as otherwise f(u) ̸= f(u′) by the observation
about levels in V ∗. The proof is by induction on levels. At level ℓ(v∗), there is only one vertex,
hence the base case is trivially true. Assume that at level k (where k ≥ ℓ(v∗)), no two vertices in
V ∗ map via f to the same vertex. We will prove that it also holds for level k + 1.

For two different vertices u, u′ with ℓ(u) = ℓ(u′) = k + 1, we may assume u and u′ are the
children of two different vertices in V ∗: if they are children of the same vertex, by Lemma 4.3 (ii)
{u, u′} = {L(w), R(w)} implies f(u) ̸= f(u′) and we are done. So, let w ̸= w′ be such that
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u

fu

z

Figure 4: The argument behind Claim 4.6. Solid arrows represent f and dashed arrows represent g.
Parentheses are omitted in labels. The shaded vertices are possible locations of the w ∈ V ∗ such that either
L(w) = u or R(w) = u.

u ∈ {L(w), R(w)} and u′ ∈ {L(w′), R(w′)}. Then ℓ(w) = ℓ(w′) = k and by the inductive hypothesis
f(w) ̸= f(w′).

Assume that f(u) = f(u′). We will prove shortly that all vertices in V ∗ that map to u or u′

by L or R map to some common vertex z by f , a contradiction with f(w) ̸= f(w′). Indeed, set
z = f(f(u)) = f(f(u′)). If a vertex x ∈ V ∗ has L(x) = g(x) = u (the same arguments will apply to
x that maps to u′), then

z = f(f(u)) = f(f(g(x))) = f(x).

If a vertex x ∈ V ∗ has R(x) = g(f(g(x))) = u, then

z = f(f(u)) = f(f(g(f(g(x))))) = f(f(g(x))) = f(x),

where we have applied f(f(g(y))) = f(y) to y = f(g(x)) which we know is not a Nephew solution
because it was checked by Find-Children. ⋄

See Figure 4 for an illustration of the argument behind Claim 4.6.

Completing the argument. It remains to find a vertex v∗ with ℓ(v∗) ≥ 2. We do not know how to
achieve this deterministically; instead, we will find a pair of vertices (v, v′) such that either ℓ(v) ≥ 2
or ℓ(v′) ≥ 2.

Lemma 4.7. Let u ∈ V be an arbitrary starting vertex. Let v = g(u) and v′ = g(f(u)). Then either

• at least one of {u, v, v′} is a solution, or
• at least one of {v, v′} is at level at least 2.

Proof. Assume that there are no solutions among {u, v, v′}. There are three cases:

• Case I: Suppose that ℓ(u) = 0. We claim that ℓ(v) = 2 in this case. Indeed, u is the only vertex
at level 0 that maps via f to f(u). Since f(f(v)) = f(f(g(u))) = f(u) but f(v) = f(g(u)) ̸= u,
f(v) has to be at level 1, hence v is at level 2.

• Case II: Suppose that ℓ(u) = 1. In this case, we have ℓ(f(u)) = 0, hence the same argument
as above applies to show that v′ = g(f(u)) is at level 2.
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gu

fgu

(a) If ℓ(u) = 0, then ℓ(g(u)) = 2.

u

ffufu

gfu

fgfu

(b) If ℓ(u) = 1, then ℓ(g(f(u))) = 2.

Figure 5: Illustration of cases I and II of Lemma 4.7. Solid arrows represent f and dashed arrows represent g.
Zigzag f arrows are between vertices of level 0. Parentheses are omitted in labels.

• Case III: Suppose that ℓ(u) ≥ 2. In this case, f(u) is at level at least 1. Since f(f(v)) =
f(f(g(u))) = f(u), we have that v is at level at least 2.

See Figure 5 for an illustration of cases I and II of Lemma 4.7.
Now we are ready to prove our main results. Recall the statement of Theorem 1.7:

Theorem 1.7. Nephew ∈ TFZPP ∩ PWPP.

Proof. The proof of Nephew ∈ TFZPP is easy. Pick an arbitrary vertex u and define v = g(u) and
v′ = g(f(u)). By Lemma 4.7, if none of u, v, v′ are solutions of Nephew, then at least one of v
and v′ is at level at least 2. Therefore, we can randomly select one vertex in {v, v′} as the root v∗

and run the randomized algorithm for Leaf-of-Rooted-Tree on the instance (V, v∗, L, R). The
correctness is guaranteed by Lemma 4.5.

Now we prove that Nephew ∈ PWPP. Intuitively, we will run the reduction of Lemma 4.5 in
parallel on (the direct product of) two graphs where the root is v in one graph and is v′ in the other.
Because we can only guarantee that our starting point is at level ≥ 2 in only one of these graphs,
we only know that one of the graphs has an induced tree rooted at its respective starting point by
the reduction process. Fortunately, the overall graph on V × V will have a rooted induced tree.

By Lemma 4.7, starting with an arbitrary vertex, we can obtain either a Nephew solution (in
which case we are done) or a pair (v, v′) where at least one is at level at least 2. We will reduce to
Leaf-of-Rooted-Tree on the vertex set V × V . Set

(A(u, u′), B(u, u′))← Find-Childrenf,g(u),

(C(u, u′), D(u, u′))← Find-Childrenf,g(u′).

Set L(u, u′) = (A(u, u′), C(u, u′)), unless one of A(u, u′), C(u, u′) is ⊥, in which case L(u, u′) = ⊥.
Set R(u, u′) = (B(u, u′), D(u, u′)), again unless one side of the pair is ⊥ in which case R(u, u′) = ⊥.
By the construction of Find-Children, if one of L, R is set to ⊥ the other one will as well. The
special vertex in V × V will be (v, v′).

Then V ∗ ⊂ V × V induces a binary tree (recall that V ∗ is the set of vertices reachable from
(v, v′) by L, R). Say that ℓ(v) ≥ 2; the other case follows by symmetry. Starting at (v, v′), L and
R will yield a tree structure on the first member of the pair by the same argument as Lemma 4.5.
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Let p, p′ be two distinct paths of any length which start at (v, v′) and traverse with L and R. The
vertex reached by p will have a different first pair element than the vertex reached by p′ (by the
tree structure on the first element of the pair), and thus p and p′ arrive at distinct vertices. This
means that there are no (undirected) cycles in the induced graph on V ∗, and so it is a tree.

5 Finding a Leaf in a Binary Tree
In the previous section, we reduced Nephew to the promise problem Leaf-of-Rooted-Tree,
which captures the following principle:

Randomly walking down a binary tree will reach a leaf in logarithmic time in expectation.

In this section, we study a family of total (instead of promise) search problems that capture the
same principle. We then study the power of these search problems.

The problem Empty-Child captures the task of finding a leaf in a tree where each non-leaf
vertex v has at least two different children L(v) and R(v). This is made total (i.e. we do not need
the promises as in Leaf-of-Rooted-Tree) by adding a parent function, denoted F (v).

Empty-Child. The input is a set of vertices V and three functions F, L, R : V → V , where F (u)
is the father of u, and L(u), R(u) are the left and the right child of u, respectively. There are
two possible solutions:
s1. u ∈ V such that F (L(u)) ̸= u or F (R(u)) ̸= u or L(u) = R(u) ̸= u. (Empty Child)
s2. 1, if L(1) = 1 or R(1) = 1 or F (1) ̸= 1. (Wrong Root)

Intuition behind Empty-Child. We think of Empty-Child as defining a directed graph on V .
Draw an edge from v to w if F (w) = v and either L(v) = w or R(v) = w. If v does not point to two
distinct vertices in this graph, then v has an “empty child” and v is a leaf9 of the graph.

The directed graph defined above may have multiple connected components. They will be of the
following sorts:

• Isolated vertices. We may have F (v) = L(v) = R(v) = v.
• Trees.
• Cycles with trees rooted at each node in the cycle.

Unless there is a solution of type (Wrong Root), we are forced to have at least one tree, rooted
at vertex 1. This forces the graph to have structures other than just isolated vertices. Then we
can find a leaf of that tree using the principle captured by Leaf-of-Rooted-Tree. An important
observation is that in the third type of structure—cycles with trees—walking randomly will also
reach a leaf in logarithmic time. We will show shortly that solution (Wrong Root) can be relaxed to
allow for graphs without trees, as long as at least one cycle-with-trees is present.

In Empty-Child, it is possible that there are vertices v, w such that F (w) = v but L(v) ̸= w
and R(v) ̸= w. This is fine: structurally, we can interpret w as being the root of a new tree. We
will consider a variant of Empty-Child where such a situation is forbidden.

In Leaf-of-Rooted-Tree, we needed a root-to-leaf path to prove that the leaf vertex was in
the promised tree. In contrast, here we enforce the tree structure syntactically, and hence do not
require a path. Indeed, a solution to Empty-Child need not be in the connected component that
contains the canonical root vertex.

9We slightly stretch the definition of leaf to include vertices with only one child. Equivalently, we could redefine
the graph such that a vertex may only have two or zero children.
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Results about Empty-Child. The main result of this section is the LOSSY-completeness of
Empty-Child:

Theorem 5.1. Empty-Child is equivalent to Lossy-Code.

The problem from the previous section, Nephew, is at least as strong as Empty-Child: we
give a reduction in Section 5.4. We conjecture that Nephew is strictly more powerful than
Empty-Child. A variant of Nephew is considered in Section 5.5 and is shown to be equivalent to
Empty-Child.

Variants of Empty-Child. For a proof later in this section it will be useful to weaken (Wrong
Root). Instead of enforcing that a root vertex exists, we only enforce that an internal vertex that is
not a self-loop exists.

Empty-Child′. Given the same inputs as in Empty-Child, we accept the solutions (Empty
Child) and:
s2a. 1, if L(1) = 1 or R(1) = 1. (Wrong Internal Vertex)

It turns out that Empty-Child′ is equivalent to Empty-Child in terms of decision tree
reductions, but we do not know of a direct way to prove this. Instead, we will use Lossy-Code as
an intermediate step in the reduction.

Theorem 5.2. Empty-Child and Empty-Child′ are equivalent under black-box reductions.

It is easy to see that Empty-Child reduces to Empty-Child′, as the difference between the
two is just a weakening of one of the solutions. In Section 5.1, we will prove that Empty-Child′

reduces to Lossy-Code (Lemma 5.3). In Section 5.3, we will prove that Lossy-Code reduces to
Empty-Child (Theorem 5.9), completing the proof of Theorem 5.2.

We also consider a stricter variant where the F function and the L and R functions are required
to “agree”:

Binary-Empty-Child. Given the same inputs as in Empty-Child but in addition to (Empty
Child) and (Wrong Root), we also accept the following solution:
s3. a vertex u ∈ V \{1} such that u /∈ {L(F (u)), R(F (u))}. (Wrong Father)

Finally, we will consider variants of Empty-Child with added height functions in Section 5.2.
The analysis of these will be a warm-up for the proof that Lossy-Code reduces to Empty-Child
in Section 5.3.

5.1 Empty-Child reduces to Lossy-Code

It is easy to see that Empty-Child is in TFZPP: Start from the root 1 and walk down the tree
using L or R randomly until we reach a leaf. In fact, the same proof reduces Empty-Child (in
fact, also Empty-Child′) to Lossy-Code:

Lemma 5.3. Empty-Child′ reduces to Lossy-Code via a black-box reduction.

Proof. Consider an instance of Empty-Child′ (V, F, L, R) and let ℓ := ⌈log |V |⌉. We construct a
Lossy-Code instance (f, g) with N := 2ℓ. Intuitively, f : [2N ]→ [N ] maps a tree-path of length
ℓ + 1 to a vertex in u by travelling downwards in the tree, and g : [N ]→ [2N ] maps a vertex in V
to a tree-path by travelling upwards.
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More formally, identify [2N ] with {L, R}ℓ+1, the space of length-(ℓ + 1) strings over the alphabet
{L, R}. Every such string x ∈ {L, R}ℓ+1 corresponds to a path of length ℓ + 1 starting from the root:
Let v0 := 1 be the root and for each i ≥ 1,

vi :=
{

L(vi−1) if xi = L;
R(vi−1) if xi = R.

Then, x corresponds to the path px := (v0, v1, . . . , vℓ+1). We define f(x) to be vℓ+1, the endpoint of
this path. For instance, f(LLR) = R(L(L(1))) when ℓ = 2.

Conversely, for any u ∈ [N ], we can construct a string x ∈ {L, R}ℓ+1 by traversing ℓ + 1 steps
upwards from u: in the i-th step, we set xℓ+2−i ← L if u = L(F (u)), or xℓ+2−i ← R otherwise10;
then update u← F (u). We set g(u) = x.

Now we prove the correctness of the reduction. Let x ∈ [2N ] be such that g(f(x)) ̸= x, we use a
case analysis to find a solution of Empty-Child′ from x. First we find the path px = (v0, v1, . . . , vℓ+1)
as defined above. Normally, two adjacent vertices in the path should be distinct (since a node should
be different from its child); we deal with the abnormal case before proceeding. Suppose there exists
some i ≥ 0 such that vi = vi+1, and let i be the smallest such index.

• If i = 0, then either L(1) = 1 or R(1) = 1, hence 1 is a (Wrong Internal Vertex).
• Otherwise, we have vi−1 ̸= vi. Without loss of generality, let us assume that vi = L(vi−1) and

vi+1 = L(vi) (= vi); the cases where we walk down the right child are completely symmetric.
– If F (vi) ̸= vi−1, then F (L(vi−1)) ̸= vi−1 and hence vi−1 has an (Empty Child).
– Otherwise, F (L(vi)) = F (vi) = vi−1 ̸= vi and hence vi has an (Empty Child).

Now we are in the “normal” case where for every i ≥ 0, vi ≠ vi+1. Let x′ := g(f(x)). Recall
that the precise definition of x′ is as follows: let uℓ+1 := vℓ+1 (= f(x)), and let ui := F (ui+1) for
each i from ℓ down to 0, then x′

i = 0 if ui = L(F (ui)) and x′
i = 1 otherwise.

Let i be the largest index such that either x′
i ̸= xi or vi−1 ̸= ui−1. (Note that such i exists

because x′ = g(f(x)) ̸= x.) Then vi = ui. We claim that vi−1 has an (Empty Child), which would
finish the proof.

• If vi−1 ≠ ui−1 = F (vi), then vi−1 ̸= F (L(vi−1)) or vi−1 ̸= F (R(vi−1)) depending on whether
xi is 0 or 1. In either case, vi−1 has an (Empty Child).

• If xi = 0 and x′
i = 1, then vi = L(vi−1) but ui ̸= L(F (ui)) (hence vi ̸= L(F (vi))). Note that

this implies that vi−1 ̸= F (vi), hence F (L(vi−1)) = F (vi) ̸= vi−1 and vi−1 has an (Empty
Child).

• If xi = 1 and x′
i = 0, then vi = R(vi−1) but ui = L(F (ui)) (hence vi = L(F (vi))). This implies

that F (R(vi−1)) = F (vi). If F (vi) ̸= vi−1, then vi−1 has an (Empty Child). Otherwise we
have L(vi−1) = R(vi−1) = vi and vi−1 ̸= vi (by the reasoning above) and vi−1 has an (Empty
Child).

5.2 Finding a Leaf with Heights
Before showing that Empty-Child is complete for LOSSY, we take a detour to study variants
of Empty-Child with heights. Indeed, the proof that Empty-Child is LOSSY-complete is in-
spired by the investigations of these variants. We first define the variants of Empty-Child and
Binary-Empty-Child with heights:

10It is possible that u /∈ {L(F (u)), R(F (u))}.
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Empty-Child-w-Height. The input is a set V of vertices and four functions F, L, R : V →
V , H : V → [|V |]. Besides (Empty Child) and (Wrong Root) listed in the definition of
Empty-Child, the following solution is also valid:
s4. a vertex u ∈ V \{1} such that u ̸= F (u) and H(u) ̸= H(F (u)) + 1; or 1, if H(1) ̸= 1.

(Wrong Height)

Binary-Empty-Child-w-Height. All of (Empty Child), (Wrong Root), (Wrong Father),
and (Wrong Height) are valid solutions.

Again, we remark that an isolated vertex u with F (u) = L(u) = R(u) = u is not a solution of
Empty-Child-w-Height or Binary-Empty-Child-w-Height.

Due to the presence of heights, these problems are in PLS now:

Lemma 5.4. Empty-Child-w-Height is in PLS, and therefore, SOPL.

Proof. We reduce the Empty-Child-w-Height instance to the instance of Sink-Of-DAG where
for each node v ∈ V , the successor of v is L(v) and the potential of v is H(v). Let v be a solution
of Sink-Of-DAG, then one of the following cases happens:

• v = 1 and L(v) = 1. Then 1 is a (Wrong Root).
• L(v) ̸= v and L(L(v)) = L(v). This implies that either F (L(v)) ̸= v or F (L(L(v))) ̸= L(v),

hence either v or L(v) is a node with (Empty Child).
• L(v) ̸= v and H(L(v)) ≤ H(v). If F (L(v)) ̸= v then v is a node with (Empty Child).

Otherwise, let u := L(v), we have that u ̸= F (u) = v and that H(u) ≤ H(F (u)), hence u has
(Wrong Height).

Therefore, Empty-Child-w-Height reduces to Sink-Of-DAG and is in PLS. Finally, since
Empty-Child-w-Height is also in LOSSY ⊆ PPADS, it is in SOPL = PLS∩PPADS [GHJ+24].

In contrast, it is easy to show that Empty-Child (as well as Lossy-Code and Bij-Lossy-Code)
is not in PLS using Prover-Delayer games and resolution width lower bounds (see, e.g., [PT19,
Proposition 3.4]).

Remark 5.5. Consider the following seemingly harder variant of Empty-Child-w-Height where
the definition of (Wrong Height) is changed to

s4’. a vertex u ∈ V \ {1} such that H(u) ≤ H(F (u)). (Wrong Height’)

Call this variant Empty-Child-w-Height′. We can define Binary-Empty-Child-w-Height′

likewise. Clearly, the proof of Lemma 5.4 also shows that Empty-Child-w-Height′ is in PLS
(hence SOPL). Since Empty-Child-w-Height is LOSSY ∩ SOPL-complete (as we will show in
Theorem 5.6), it follows that Empty-Child-w-Height′ is equivalent to Empty-Child-w-Height.

The difference between (Wrong Height) and (Wrong Height’) resembles the difference be-
tween Sink-Of-Metered-Line and Sink-Of-Potential-Line. Indeed, our proof below (that
Empty-Child-w-Height′ reduces to Empty-Child-w-Height) starts from the fact that Sink-
Of-Metered-Line is SOPL-complete, hence it makes black-box use of the reduction from Sink-
Of-Potential-Line to Sink-Of-Metered-Line [FGMS20].11

11Although [FGMS20] only claims a reduction from End-Of-Potential-Line to End-Of-Metered-Line, the
same reduction also proves that Sink-Of-Potential-Line reduces to Sink-Of-Metered-Line.
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Next, we show that Empty-Child-w-Height is complete for the class LOSSY ∩ SOPL. The
proof is inspired by the recent intersection results in TFNP: CLS = PPAD ∩ PLS [FGHS23],
EOPL = PPAD ∩ PLS, and SOPL = PPADS ∩ PLS [GHJ+24]. Given a PPAD instance A and a
PLS instance B, [FGHS23] showed how to “combine” A and B into a CLS instance C such that a
solution of C implies either a solution of A or a solution of B. Our idea is similar here: Given a
Lossy-Code instance (f, g) and a Sink-Of-Metered-Line instance (S, P, V ), we show how to
create an instance (F, L, R, H) of Empty-Child-w-Height such that a solution of (F, L, R, H)
implies either a solution of (f, g) or a solution of (S, P, V ). Roughly speaking, we use (f, g) to
implicitly define an exponentially large tree and use (S, P, V ) to define the heights on the tree.

Sink-Of-Metered-Line [HY20, FGMS20]. Given functions S, P : [N ] → [N ] and V : [N ] →
[N ] ∪ {0} there are four types of possible solutions:
s1. 1, if P (1) ̸= 1 or S(1) = 1 or V (1) ̸= 1, (Bad Source)
s2. A vertex x ∈ [N ] such that P (S(x)) ̸= x, (Sink of Line)
s3. A vertex x ∈ [N ] \ {1} such that V (x) = 1, (Bad Meter I)
s4. A vertex x ∈ [N ] such that (V (x) > 0 and V (S(x)) − V (x) ̸= 1) or (V (x) > 1 and

V (x)− V (P (x)) ̸= 1). (Bad Meter II)

Theorem 5.6. Lossy-Code ∩ Sink-Of-Metered-Line reduces to Empty-Child-w-Height by
a black-box reduction.

Proof. An input of Lossy-Code ∩ Sink-Of-Metered-Line consists of an instance (f, g) of
Lossy-Code and an instance (S, P, V ) of Sink-Of-Metered-Line; either a solution for (f, g) or
a solution for (S, P, V ) is a valid solution. Now we show how to reduce this instance (f, g, S, P, V )
to an instance of Empty-Child-w-Height. Let N, M denote the dimensions of the inputs, where
f : [N ] → [2N ], g : [2N ] → [N ], S, P : [M ] → [M ], and V : [M ] → [M ] ∪ {0}. Without loss
of generality, we may assume that N = 2n is a power of 2 (this follows from the robustness of
Lossy-Code as shown in Lemma 2.3).

We will create a “binary tree” with n + M levels. Roughly speaking, the first n levels form a
complete binary tree, and each of the last M levels contains N vertices. Let (i, j) denote the j-th
vertex in the i-the level; we abuse notation and write (i, j) also as the index of the node (i, j), hence

(i, j) =
{

j + 2i−1 − 1 if i ≤ n,

j + N · (i− n)− 1 otherwise.

We now specify the structure of the tree.

• The father of the root is F (1, 1) := (1, 1).
• For every 2 ≤ i ≤ n + 1 and j ∈ [2i−1], F (i, j) := (i− 1, ⌈j/2⌉).
• For every 2 ≤ i ≤M and j ∈ [N ] s.t. V (i) ̸= 0, F (i + n, j) := (P (i) + n, ⌈f(j)/2⌉).
• For every 2 ≤ i ≤M and j ∈ [N ] s.t. V (i) = 0, F (i + n, j) := (i + n, j).
• For every i ∈ [n] and j ∈ [2i−1], the left and right children of (i, j) are L(i, j) := (i + 1, 2j − 1)

and R(i, j) := (i + 1, 2j) respectively.
• For every i ∈ [M ] and j ∈ [N ] s.t. V (i) ̸= 0, L(i + n, j) := (S(i) + n, g(2j − 1)) and

R(i + n, j) := (S(i) + n, g(2j)).
• For every i ∈ [M ] and j ∈ [N ] s.t. V (i) = 0, L(i + n, j) := R(i + n, j) := (i + n, j).

27



1, 1

2, 1

3, 1 3, 2

2, 2

3, 3 3, 4

··
·

n + 1, 1 n + 1, N

n + i, j

··
·

··
·

· · ·

· · ·

complete
binary tree

M levels of
N vertices each

⌈f(j)/2⌉

f(j)

j

2j − 1 2j

g(2j − 1) g(2j)

level P (i) + n

level i + n

level S(i) + n

children

parent

[N ]

[2N ]

[N ]

[2N ]

[N ]

x 7→ ⌈x/2⌉

g f

x 7→
2x− 1 x 7→ 2x

gf

Figure 6: The “tree” constructed in Theorem 5.6. Left: The first n + 1 levels form a complete binary tree
and the last M levels are computed from the Lossy-Code instance (f, g) and the Sink-Of-Metered-Line
instance (S, P, V ). Right: For each node (i + n, j) in the last M levels, the levels of its parent and children
are computed from (S, P ), and the positions of these nodes within their levels are computed from (f, g).

• For every i ∈ [n], the height of every node in the i’th level is i.
• For every i ∈ [M ], the height of every node in the (i + n)’th level is V (i) + n.

Now, given any solution (i′, j) of Empty-Child-w-Height, we show how to obtain a solution
of either (f, g) (for Lossy-Code) or (S, P, V ) (for Sink-Of-Metered-Line). In fact, from the
above definitions of F, L, R one can see that it must be the case that i′ > n; moreover, if (i′, j) has
(Wrong Height), then it must be the case that i′ > n + 1 (unless V (1) = 1 and 1 is a (Bad Source)
for Sink-Of-Metered-Line). Now we define i := i′ − n, hence i ∈ [M ]. We can see that

F (L(i′, j)) = (P (S(i)) + n, ⌈f(g(2j − 1))/2⌉); (if S(i) ̸= 1)
F (R(i′, j)) = (P (S(i)) + n, ⌈f(g(2j))/2⌉); (if S(i) ̸= 1)

H(i′, j)−H(F (i′, j)) = V (i)− V (P (i)). (if i > 1)

Consider the following case analysis.

• Suppose that (i′, j) has an (Empty Child). Clearly, V (i) ̸= 0. If F (L(i′, j)) ̸= (i′, j), then either
S(i) = 1, or P (S(i)) ̸= i, or ⌈f(g(2j − 1))/2⌉ ≠ j. If F (R(i′, j)) ̸= (i′, j), then either S(i) = 1,
or P (S(i)) ̸= i, or ⌈f(g(2j))/2⌉ ̸= j. If L(i′, j) = R(i′, j) ̸= (i′, j), then g(2j − 1) = g(2j).
Hence, one of the following holds:

– S(i) = 1. If P (1) ̸= 1 or S(1) = 1, then 1 is a (Bad Source) for Sink-Of-Metered-Line;
otherwise, since P (S(i)) = 1 ̸= i, i is a (Sink of Line) for Sink-Of-Metered-Line.

– P (S(i)) ̸= i. In this case, i is a (Sink of Line) for Sink-Of-Metered-Line.
– ⌈f(g(2j − 1))/2⌉ ≠ j. In this case, f(g(2j − 1)) ̸= 2j − 1, hence 2j − 1 is an answer for

Lossy-Code.
– ⌈f(g(2j))/2⌉ ≠ j. In this case, f(g(2j)) ̸= 2j, hence 2j is an answer for Lossy-Code.
– g(2j − 1) = g(2j). In this case, either f(g(2j − 1)) ̸= 2j − 1 or f(g(2j)) ̸= 2j, hence we

can find an answer for Lossy-Code.
• Clearly (1, 1) is not a (Wrong Root), so we do not need to care about this case.
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• Suppose that (i′, j) has (Wrong Height). Then V (i)−V (P (i)) ̸= 1 and F (i′, j) ̸= (i′, j), which
implies that V (i) ≥ 1. If V (i) > 1, then i is a (Bad Meter II) for Sink-Of-Metered-Line;
otherwise i is a (Bad Meter I) for Sink-Of-Metered-Line.

It follows that given a solution for relaxed Empty-Child-w-Height, we could find a solution for
either Lossy-Code or Sink-Of-Metered-Line.

Since Empty-Child-w-Height is hard for Lossy-Code ∩ Sink-Of-Metered-Line (Theo-
rem 5.6), is in SOPL (Lemma 5.4), and is in LOSSY (Lemma 5.3), we have:

Corollary 5.7. Empty-Child-w-Height is complete for SOPL ∩ LOSSY.

Similarly, we can also reduce Bij-Lossy-Code ∩ End-Of-Metered-Line to Binary-Empty-
Child-w-Height. Recall that End-Of-Metered-Line is defined as follows:

End-Of-Metered-Line. The input is functions S, P : [N ]→ [N ] and V : [N ]→ [N ]∪ {0} (i.e.,
same as Sink-Of-Metered-Line). Besides the solutions of Sink-Of-Metered-Line, we
also accept the following solutions:
s5. A vertex x ∈ [N ] \ {1} such that S(P (x)) ̸= x. (End of Line)
s6. A vertex x ∈ [N ] such that (V (x) > 0 and V (S(x))− V (x) ̸= 1). (Bad Meter III)

Corollary 5.8. Bij-Lossy-Code ∩ End-Of-Metered-Line can be reduced to Binary-Empty-
Child-w-Height.

Proof Sketch. The reduction is exactly the same, except that we also need to handle the case that
(i′, j) has a (Wrong Father). We can also see that i′ > n + 1, hence i = i′ − n ≥ 2. We also have
that V (i) ̸= 0. Hence,

L(F (i′, j)) = (S(P (i)) + n, g(2⌈f(j)/2⌉ − 1)); (since i > 1)
R(F (i′, j)) = (S(P (i)) + n, g(2⌈f(j)/2⌉)). (since i > 1)

Hence, the case when (i′, j) has a (Wrong Father) is argued as follows.

• Suppose that (i′, j) has a (Wrong Father). Letting v := 2⌈f(j)/2⌉, then

(i′, j) /∈ {(S(P (i)) + n, g(v − 1)), (S(P (i)) + n, g(v))}.

Hence, one of the following holds:
– i ̸= S(P (i)). In this case, i is an (End of Line) for End-Of-Metered-Line.
– j /∈ {g(v − 1), g(v)}. However f(j) ∈ {v − 1, v}, hence g(f(j)) ̸= j and j is an answer for

Bij-Lossy-Code.

5.3 LOSSY-Completeness of Empty-Child

Next, we adapt the above proof to show that Lossy-Code reduces to Empty-Child, establishing
the equivalence between the two problems. Roughly speaking, our reduction makes use of two ideas:

1. Lossy-Code reduces to PPADS. In fact, a Lossy-Code instance f : [N ] → [2N ] and
g : [2N ]→ [N ] can be seen as a Sink-Of-Line instance where g is the successor function, f is
the predecessor function, and there are N distinguished sources numbered from N + 1 to 2N .
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2. One can reduce Lossy-Code ∩ PPADS to Empty-Child by slightly adapting the reduction
in Section 5.2, using the PPADS instance to handle the “heights”.

Our reduction starts by constructing a forest with 2N levels, where each level contains N vertices.
The children and parents of each vertex can then be defined in the same way as those in the bottom
M levels of the tree from Theorem 5.6, except that a vertex at the i-th level has its father at the
f(i)-th level and children at the g(i)-th level. This is already a “forest” where every vertex in levels
N + 1 ∼ 2N are distinguished roots (hence there are N2 distinguished roots). Finally, we create a
complete binary tree of depth log(N2) at the top to connect them.

Theorem 5.9. There is a reduction from Lossy-Code to Empty-Child.

Proof. Given f : [N ] → [2N ] and g : [2N ] → [N ] as the inputs to Lossy-Code, we construct an
instance (F, L, R) of Empty-Child as follows: As in the proof of Theorem 5.6, we may assume
without loss of generality that N = 2n is a power of 2. The “binary tree” has 2(n + N) levels: the
first 2n levels form a perfect binary tree, while each of the remaining 2N levels contains exactly N
vertices. Following the notation in the proof of Theorem 5.6, we write (i, j) for the j-th vertex in
the i-th level. Slightly abusing notation, we also use (i, j) to denote the index of this vertex, namely

(i, j) =
{

j + 2i−1 − 1 if i ≤ 2n,

j + N · (i− 2n− 1) + N2 − 1 otherwise.

The structure of the tree is described below:

• The father of the root is F (1, 1) := (1, 1).
• For every 2 ≤ i ≤ 2n and j ∈ [2i−1], F (i, j) := (i− 1, ⌈j/2⌉).
• For every 1 ≤ i ≤ N and j ∈ [N ], F (i + 2n + N, j) := (2n, ⌈((i− 1) ·N + j)/2⌉).
• For every 1 ≤ i ≤ N and j ∈ [N ], F (i + 2n, j) := (f(i) + 2n, ⌈f(j)/2⌉).
• For every i ∈ [2n−1] and j ∈ [2i−1], the left and right children of (i, j) are L(i, j) := (i+1, 2j−1)

and R(i, j) := (i + 1, 2j) respectively.
• For every 1 ≤ i ≤ N and j ∈ [N/2], L(2n, (i − 1)N/2 + j) := (i + 2n + N, 2j − 1) and

R(2n, (i− 1)N/2 + j) := (i + 2n + N, 2j).
• For every i ∈ [2N ] and j ∈ [N ], L(i + 2n, j) := (g(i) + 2n, g(2j − 1)) and R(i + 2n, j) :=

(g(i) + 2n, g(2j)).

Given any solution (i′, j) of Empty-Child, we show how to obtain a solution of Lossy-Code.
Note that our Empty-Child instance only has solutions with (Empty Child): (Wrong Father) and
(Wrong Height) are not allowed, and (Wrong Root) does not apply since our tree has a “correct”
root. Hence, we have that F (L(i′, j)) ̸= (i′, j), or F (R(i′, j)) ̸= (i′, j), or L(i′, j) = R(i′, j) ̸= (i′, j).
It follows from the structure of our tree that i′ > 2n; define i := i′ − 2n. We have

F (L(i′, j)) = F (g(i) + 2n, g(2j − 1)) = (f(g(i)) + 2n, ⌈f(g(2j − 1))/2⌉);
F (R(i′, j)) = F (g(i) + 2n, g(2j)) = (f(g(i)) + 2n, ⌈f(g(2j))/2⌉).

There are three cases:

• Case I: F (L(i′, j)) ̸= (i′, j). Then either f(g(i)) ̸= i, or ⌈f(g(2j − 1))/2⌉ ≠ j. It follows that
either i or 2j − 1 is a valid solution for Lossy-Code.
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Figure 7: The “tree” constructed in Theorem 5.9 where solid arrows represent tree edges. The first 2n levels
along with the last N levels form the perfect binary tree. Every vertex in the last N levels are distinguished
roots of the bottom forest, and hence are the leaves of the perfect binary tree. The last 2N levels form the
bottom forest, whose structure is computed from the Lossy-Code instance (f, g).
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• Case II: F (R(i′, j)) ̸= (i′, j). Then either f(g(i)) ̸= i, or ⌈f(g(2j))/2⌉ ̸= j. It follows that
either i or 2j is a valid solution for Lossy-Code.

• Case III: L(i′, j) = R(i′, j). Then g(2j − 1) = g(2j), which means that either 2j or 2j − 1 is a
valid solution for Lossy-Code.

Similarly, Bij-Lossy-Code reduces to Binary-Empty-Child:
Corollary 5.10. There is a reduction from Bij-Lossy-Code to Binary-Empty-Child.
Proof Sketch. The reduction is exactly the same as in Theorem 5.9, except that we also need to
handle the case that (i′, j) has a (Wrong Father). Clearly, i = i′− 2n ∈ [N ]. Letting v := 2⌈f(j)/2⌉,
we have

L(F (i′, j)) = L(f(i) + 2n, ⌈f(j)/2⌉) = (g(f(i)) + 2n, g(v − 1));
R(F (i′, j)) = R(f(i) + 2n, ⌈f(j)/2⌉) = (g(f(i)) + 2n, g(v)).

Since (i′, j) ̸∈ {L(F (i′, j)), R(F (i′, j))}, there are two cases:
• Case I: i′ ̸= g(f(i)) + 2n. This implies that g(f(i)) ̸= i, hence i is a valid solution for

Bij-Lossy-Code.
• Case II: j ̸∈ {g(v − 1), g(v)}. However f(j) ∈ {v − 1, v}, hence g(f(j)) ̸= j and j is a valid

solution for Bij-Lossy-Code.
It is unclear whether Binary-Empty-Child is equivalent to Bij-Lossy-Code. We are un-

able to reduce the former to the latter, and the proof strategy of Lemma 5.3 does not work
here. We conjecture that (in the black-box setting) Binary-Empty-Child is strictly harder than
Bij-Lossy-Code.

5.4 Empty-Child Reduces to Nephew

Recall once more the definition of Nephew:

Nephew. Given a set V of vertices and two functions f : V → V and g : V → V . Think of f(v)
as the father of v and g(v) as the nephew of v. A solution is one of the following.
s1. v ∈ V such that f(f(g(v))) ̸= f(v) (your nephew’s grandparent is not your parent)
s2. v ∈ V such that f(g(v)) = v (you are your nephew’s parent)

Nephew is at least as powerful as Empty-Child. We show a reduction from an Empty-Child
instance (V, F, L, R) to a Nephew instance (V ′, f, g), where V ′ = V × {0, 1}. If there is an
Empty-Child solution at v ∈ V , then both of (v, 0), (v, 1) will be self-loops for both f and g, giving
a solution in the Nephew instance. Otherwise, we will construct a valid Nephew substructure.
Special care will need to be taken in the case of isolated vertices in the Empty-Child instance, as
well as for the distinguished root vertex 1 ∈ V .

The procedure Reduce-EC-to-Nephew in Algorithm 2 is the reduction. It takes in a vertex
(v, i) ∈ V ′ and returns a tuple containing f(v, i) and g(v, i). See Figure 8 for an illustration of the
Nephew instance returned by this procedure.

Before we prove its validity, we provide some intuition for the reduction. In the Nephew
instance, we construct a structure where, for each vertex v ∈ V , the vertices corresponding to F (v)
are pointed to via the f function and the vertices corresponding to L(v), R(v) are pointed to via
the g function. In order to do this, we need to double the number of vertices: (v, 0) will point via g
to R(v) and be pointed at via f by L(v); and (v, 1) will point via g to L(v) and be pointed at via f
by R(v). Isolated vertices and the root vertex will be handled separately.
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Algorithm 2 Procedure Reduce-EC-to-NephewF,L,R(v, i)
1: if F (L(v)) ̸= v ∨ F (R(v)) ̸= v ∨ L(v) = R(v) ̸= v then
2: return ((v, i), (v, i)) ▷ (Empty Child), so self-loop
3: else if v = 1 and L(1) = 1 ∨R(1) = 1 ∨ F (1) ̸= 1 then
4: return ((1, i), (1, i)) ▷ (Wrong Root), so self-loop
5: else if F (v) = L(v) = R(v) = v then
6: return ((1, 0), (v, 1− i)) ▷ Isolated vertex, treat specially
7: else
8: if v = 1 then
9: f ← (1, 0)

10: else if v = R(F (v)) then
11: f ← (F (v), 1)
12: else ▷ v ̸= 1 and v is not a right child
13: f ← (F (v), 0)
14: if (v, i) = (1, 0) then
15: g ← (L(L(v)), 0)
16: else if (v, i) = (1, 1) then
17: g ← (1, 1)
18: else if i = 0 then
19: g ← (R(v), 0)
20: else ▷ v ̸= 1 and i = 1
21: g ← (L(v), 0)
22: return (f, g)

Theorem 5.11. (f(v, i), g(v, i)) ← Reduce-EC-to-NephewF,L,R is a reduction from Empty-Child
to Nephew.

Proof. Consider any (v, i) ∈ V ′ such that v is a solution to Empty-Child. Then there is a self-loop
on (v, i) with both f and g, meaning that f(g(v, i)) = (v, i), and so (v, i) is a solution to the Nephew
instance. Given such an Nephew solution, then, it is easy to find a solution to Empty-Child
by checking v. Additionally, it is possible for there to be a Nephew solution if an Empty-Child
solution exists at L(v) or R(v), or at v = 1 if a solution exists at L(L(1)). Again, it is easy to check
if any of these is the case.

We will show that those scenarios are the only solutions to the Nephew instance. Consider any
(v, i) ∈ V ′ and assume there is no solution at v, L(v), R(v), or L(L(1)). Then we have the following
cases:

• F (v) = L(v) = R(v) = v. Note then v ̸= 1.
There is no solution of type 1:

f(f(g(v, i))) = f(f(v, 1− i)) = f(1, 0) = (1, 0) = f(v, i),

where the second-to-last equality comes from the fact that either 1 is not a solution, so
f(1, 0) = (1, 0), or 1 is a solution and (1, 0) self-loops.

There is no solution of type 2:

f(g(v, i)) = f(v, 1− i) = (1, 0) ̸= (v, i).

For the remaining cases, assume F (v) = L(v) = R(v) = v does not hold.
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(a) Local Nephew structure for a typical node v. The
value of i depends on whether or not v is a right child.
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(b) Local Nephew structure around node 1, with a
node v that is a self-loop in Empty-Child.

Figure 8: Illustration of Reduce-EC-to-NephewF,L,R. Solid arrows represent f and dashed arrows represent
g. Parentheses are omitted in labels.

• (v, i) = (1, 0).
There is no solution of type 1:

f(f(g(1, 0))) = f(f(L(L(1)), 0)) = f(F (L(L(1))), 0) = f(L(1), 0) = (F (L(1)), 0) = (1, 0)
= f(1, 0),

where we used the fact that L(1) and L(L(1)) are not solutions.
There is no solution of type 2:

f(g(1, 0)) = f(L(L(1)), 0) = (F (L(L(1))), 0) = (L(1), 0) ̸= (1, 0).

• (v, i) = (1, 1).
There is no solution of type 1:

f(f(g(1, 1))) = f(f(1, 1)) = f(1, 0) = (1, 0) = f(1, 1).

There is no solution of type 2:

f(g(1, 1)) = f(1, 1) = (1, 0) ̸= (1, 1).

• v ̸= 1 and i = 0. Observe that R(F (R(v))) = R(v), as F (R(v)) = v.
There is no solution of type 1:

f(f(g(v, i))) = f(f(R(v), 0)) = f(F (R(v)), 1) = f(v, 1) = f(v, 0),

where the last inequality comes from the fact that (v, 0) and (v, 1) will always map to the
same value under f .

There is no solution of type 2:

f(g(v)) = f(R(v), 0) = (F (R(v)), 1) = (v, 1) ̸= (v, 0).

• v ̸= 1 and i = 1.
There is no solution of type 1:

f(f(g(v, i))) = f(f(L(v), 0)) = f(F (L(v)), 0) = f(v, 0) = f(v, 1),
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where the last inequality comes from the fact that (v, 0) and (v, 1) will always map to the
same value under f .

There is no solution of type 2:

f(g(v, i)) = f(L(v), 0) = (F (L(v)), 0) = (v, 0) ̸= (v, 1).

We have ruled out Nephew solutions other than those listed before the case analysis. Thus,
every solution in the Nephew instance can be used to efficiently map back to an Empty-Child
solution as required.

Combining Theorem 5.11 with Theorem 5.9, we obtain the following.

Corollary 5.12. There is a reduction from Lossy-Code to Nephew.

5.5 Empty-Child and Nephew with Inverse
It seems to be difficult to reduce Nephew to Empty-Child. It is possible that Nephew is strictly
more powerful than Empty-Child. However, a proof of this seems elusive. To demonstrate
this, we consider a natural modification to Nephew by adding an inverse to f . Interestingly, we
show that this results in a problem that is equivalent to Empty-Child. If we believe that this
modification is superficial, we could take this as evidence that Nephew and Empty-Child are in
fact equivalent. Alternatively, it could indicate that any proof that shows that Nephew does not
reduce to Empty-Child needs to argue how an inverse to f makes Nephew significantly easier.

We need to be a little bit careful in our definition of the inverse function. In the previous
subsection we reduced Empty-Child to Nephew and created vertices that were not solutions yet
were not pointed at via the f function: for an illustration see Figure 8b. This situation only arises in
the case where f(f(v)) = f(v). Therefore we allow f−1(v) = ⊥ in instances where f(f(v)) = f(v).

Nephew-w-Inverse. Given the same inputs as in Nephew and a function f−1 : V → V ∪ {⊥},
in addition to the solutions of Nephew, we accept the following solutions:
s3. v ∈ V such that f−1(v) ̸= ⊥ and f(f−1(v)) ̸= v. (Wrong Inverse)
s4. v ∈ V such that f−1(v) = ⊥ and f(f(v)) ̸= f(v). (Bad ⊥)

First we show that Reduce-EC-to-Nephew can be augmented to include the inverse function,
and therefore Empty-Child reduces to Nephew-w-Inverse. This augmented procedure is shown
in Algorithm 3. It returns a tuple (f, f−1, g). New additions are in blue and underlined.

Theorem 5.13. Empty-Child reduces to Nephew-w-Inverse.

Proof. Theorem 5.11 shows that Reduce-EC-to-Nephew is a reduction from Empty-Child to
Nephew. The analysis in that proof still holds, as the f and g pointers returned are unmodified by
the augmentation to Reduce-EC-to-NwI. Thus, all that is left to do is to prove that no additional
solutions are introduced by the addition of the f−1 pointer.

As in the proof of Theorem 5.11, consider (v, i) ∈ V ′ and assume there is no solution at
v, L(v), R(v), or L(L(1)). We know already that there are no solutions of types 1 or 2. All that is
left to prove is that no solutions of type 3 (Wrong Inverse) or type 4 (Bad ⊥) exist.

• F (v) = L(v) = R(v) = v. Note then v ̸= 1. f−1(v) = ⊥, so we need only to consider solutions
of type 4. None exist:

f(f(v, i)) = f((1, 0)) = (1, 0) = f(v, i).
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Algorithm 3 Procedure Reduce-EC-to-NwIF,L,R(v, i)
1: if F (L(v)) ̸= v ∨ F (R(v)) ̸= v ∨ L(v) = R(v) ̸= v then
2: return ((v, i), (v, i), (v, i)) ▷ (Empty Child), so self-loop
3: else if v = 1 and L(1) = 1 ∨R(1) = 1 ∨ F (1) ̸= 1 then
4: return ((1, i), (1, i), (1, i)) ▷ (Wrong Root), so self-loop
5: else if F (v) = L(v) = R(v) = v then
6: return ((1, 0),⊥, (v, 1− i)) ▷ Isolated vertex, treat specially
7: else
8: if v = 1 then
9: f ← (1, 0)

10: else if v = R(F (v)) then
11: f ← (F (v), 1)
12: else ▷ v ̸= 1 and v is not a right child
13: f ← (F (v), 0)
14: if (v, i) = (1, 0) then
15: g ← (L(L(v)), 0)
16: f−1 ← (L(v), 0)
17: else if (v, i) = (1, 1) then
18: g ← (1, 1)
19: f−1 ← ⊥
20: else if i = 0 then
21: g ← (R(v), 0)
22: f−1 ← (L(v), 0)
23: else ▷ v ̸= 1 and i = 1
24: g ← (L(v), 0)
25: f−1 ← (R(v), 0)
26: return (f, f−1, g)

• (v, i) = (1, 0). f−1(v) ̸= ⊥, so we need only to consider solutions of type 3. None exist:

f(f−1(1, 0)) = f(L(1), 0) = (F (L(1)), 0) = (1, 0).

• (v, i) = (1, 1). f−1(v) = ⊥, so we need only to consider solutions of type 4. None exist:

f(f(1, 1)) = f(1, 0) = (1, 0) = f(1, 1).

• v ̸= 1 and i = 0. f−1(v) ̸= ⊥, so we need only to consider solutions of type 3. None exist:

f(f−1(v, 0)) = f(L(v), 0) = (F (L(v)), 0) = (v, 0).

• v ̸= 1 and i = 1. f−1(v) ̸= ⊥, so we need only to consider solutions of type 3. None exist:

f(f−1(v, 1)) = f(R(v), 0) = (F (R(v)), 1) = (v, 1).

We will now show that Nephew-w-Inverse reduces to Empty-Child. To do so, we will reduce
it to Empty-Child′.

Theorem 5.14. Nephew-w-Inverse reduces to Empty-Child′.
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Algorithm 4 Procedure Find-Children-and-Parentf,f−1,g(v)
1: if f−1(v) = ⊥ then
2: return (v, v; v) ▷ Self-loop on vertices with no f -inverse.
3: else
4: v′ ← f−1(v) ▷ We will use the f -inverse of v as our starting point.
5: h(v′)← g(f(g(v′))) ▷ Rename for notational brevity
6: if CheckSol(v) ∨ CheckSol(v′) ∨ CheckSol (f(g(v′))) then
7: return (⊥,⊥; f(v)) ▷ We have found a solution, but always return f(v).
8: else
9: return (f(g(v′)), f(h(v′)); f(v)) ▷ The two children of v are f(g(v′)) and f(h(v′)); the

parent of v is f(v).

Proof. We use a variant of the Find-Children procedure named Find-Children-and-Parent that
in addition also returns the parent vertex. Here, we define CheckSol(u) to be the procedure that
returns True iff u is a solution to the Nephew-w-Inverse instance.

Find-Children-and-Parent is given in Algorithm 4. See Figure 9 for an illustration. We show
some useful properties of this procedure.

Claim 5.15. Let Find-Children-and-Parentf,f−1,g(v) = (a, b; c). Suppose f−1(v) ̸= ⊥. If (a, b) ̸=
(⊥,⊥), then

(i) a ̸= b,
(ii) f(a) = f(b) = v.

Proof of Claim 5.15.

(i) As a is not a solution, we know that b = f(g(a)) ̸= a.
(ii) As v is not a solution, f(v′) = f(f−1(v)) = v. As v′ is not a solution, f(a) = f(f(g(v′))) =

f(v′) = v. As a is not a solution, f(b) = f(f(g(a))) = f(a) = v. ⋄

Now we show the reduction. First, we need to choose a vertex from the Nephew-w-Inverse
instance to be our distinguished vertex 1 in Empty-Child′. We will select it such that f(f(1)) ̸=
f(1).

Let v⋆ be the lexicographically first Nephew-w-Inverse vertex. Before performing the rest of
the reduction, check the vertices {v⋆, f(v⋆), g(f(v⋆)} to see if they are solutions. If any are, halt
the reduction by returning some easily-falsified Empty-Child′ instance (e.g. a single vertex that
self-loops on F, L, R). Given such an Empty-Child′ instance we can easily find a solution to the
Nephew-w-Inverse instance by ensuring that our reduction always checks these specified vertices.

Claim 5.16. If none of {v⋆, f(v⋆), g(f(v⋆)} are Nephew-w-Inverse solutions, then either f(f(v⋆)) ̸=
f(v⋆) or f(f(g(f(v⋆))) ̸= f(g(f(v⋆)).

Proof. Assume otherwise. f(v⋆) is not a solution, so f(f(g(f(v⋆)))) = f(f(v⋆)) and f(g(f(v⋆))) ̸=
f(v⋆). Then

f(f(v⋆)) = f(f(g(f(v⋆)))) = f(g(f(v⋆))) ̸= f(v⋆),

a contradiction. ⋄
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Figure 9: The procedure performed by Find-Children-and-Parentf,f−1,g(v). Solid arrows represent f ,
the dotted arrow represents f−1, and dashed arrows represent g. Parentheses are omitted in labels. The
dotted boxes indicate the vertices that will be returned. The procedure will check if the shaded vertices are
Nephew-w-Inverse solutions, and in doing so will visit the unshaded vertices (but will not detect if these
are solutions). Note that f(h(v′)) = v′ is possible.

Set vertex 1 to be v⋆ if f(f(v⋆)) ̸= f(v⋆) and g(f(v⋆)) otherwise. In the following, assume we
have relabeled V such that the vertex chosen above is vertex 1.

For every vertex v, if Find-Children-and-Parentf,f−1,g(v) returns (⊥,⊥, c), let v∗ be any
vertex other than v, and assign L(v) = v∗, R(v) = v∗, and F (v) = c. This will be an Empty-Child′

solution of type (Empty Child) and we can easily compute an Nephew-w-Inverse solution if such
an Empty-Child′ solution is detected: check v, v′, and f(g(v′)) for solutions. Otherwise, assign

(L(v), R(v); F (v))← Find-Children-and-Parentf,f−1,g(v).

We will show that the only solutions to the Empty-Child′ instance are those that are associated
with (⊥,⊥, c) outputs as described above. Consider any v in the Empty-Child′ instance and split
into two cases: one where F (v) = L(v) = R(v) = v and one where this does not hold.

In the first case:

• F (L(v)) = F (v) = v and F (R(v)) = F (v) = v.
• L(v) = R(v) = v.
• It is not the case that v = 1. We must have f−1(v) = ⊥ but we used Claim 5.16 to choose

vertex 1 such that f(f(1)) ̸= f(1). Together, these would imply that 1 is a solution of type
(Bad ⊥), but we also chose 1 to not be a solution.

In the second case, we may assume there is no Nephew-w-Inverse solution at v, v′, and
f(g(v′)). Then:

• F (L(v)) = v and F (R(v)) = v by Claim 5.15 Item (ii). Note that this is why we need to always
return a value for F in Find-Children-and-Parent: even if L(v) or R(v) are solutions, they
will still correctly point back to v.

• L(v) ̸= R(v) by Claim 5.15 Item (i).
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• L(1) ̸= 1 and R(1) ̸= 1. We assigned vertex 1 such that f(f(1)) ̸= f(1), which implies f(1) ̸= 1.
Thus, F (L(1)) = 1 but F (1) ̸= 1, implying L(1) ̸= 1 and the same argument works for R.

6 The Strength of Lossy-Code

We start with the following candidate problem that, at the beginning of this research, was conjectured
to be strictly harder than Lossy-Code.

c-AMGM-LC. Let c > 1 be a constant, V := [2N ] and P := [c ·N2].
The input is a coloring function C : V → {0, 1} and two mappings F : P → V × V ,

G : V × V → P . Let H := C−1(0)× C−1(1). The goal is to find solutions of either type:

s1. a pigeon x ∈ P such that G(F (x)) ̸= x; (Wrong Encoding-Decoding)
s2. a pigeon x ∈ P such that F (x) /∈ H; (Invalid Hole)

The main result in this section is that c-AMGM-LC is, in fact, reducible to Lossy-Code.
Moreover, our techniques allow us to reduce problems similar to (and sometimes more complicated
than) c-AMGM-LC to Lossy-Code in a systematic way; we provide two additional examples later
(c-Dual-AMGM-LC in Section 6.2.2 and a problem capturing the Inclusion-Exclusion principle in
Section 6.2.3).

Some of the results in this section are already known in the world of bounded arithmetic:
they follow from the machineries underlying Jeřábek’s theory of (additive) approximate counting
APC1 := PV1 + dwPHP(PV) [Jeř07a]. For example, it is not hard to formalize the AM-GM
inequality in APC1 (more precisely, prove in APC1 that c-AMGM-LC is total); Wilkie’s witnessing
theorem ([Tha02], [Jeř04, Proposition 1.14]) implies that every NP search problem provably total in
APC1 (including c-AMGM-LC) reduces to Lossy-Code.

One of the goals of this section is to introduce the ideas of APC1 to audiences who are less
familiar with APC1 (or bounded arithmetic in general). In Section 6.1, we introduce reconstruc-
tive pseudorandom generators with feasible witnesses, which is the central technique underlying
[Jeř07a]. This technique allows us to put a wide range of problems similar to c-AMGM-LC inside
Lossy-Code.

6.1 Basics of APC1

This subsection presents some background of APC1 [Jeř07a] that is needed in our reductions. In
[Jeř07a], Jeřábek uses the Nisan–Wigderson generator [NW94] to approximate the size of feasible
sets. Looking ahead, we will abstract the properties needed for the Nisan–Wigderson generator as
reconstructive PRGs with “feasible witnesses” in some sense.

We first define the notion of injection-surjection pairs. Let A, B be two sets. We say that there
is an injection-surjection pair certifying |A| ≤ |B| if there are polynomial-time computable functions
f : A → B and g : B → A such that for every x ∈ A, g(f(x)) = x. This will be denoted by the
following notation

A
f−⇀↽−
g

B.

(Note that in the above notation, the injection-surjection pair is implicitly assuming that the
left-hand side (A) is smaller than the right-hand side (B); hence A ⇌ B and B ⇌ A have very
different meanings.)
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Injection-surjection pairs are the basic primitive used in APC1 to compare the sizes of two
sets; roughly speaking, this is because the underlying principle is the retraction (weak) pigeonhole
principle (over polynomial-time functions; i.e., the totality of Lossy-Code).

For any sets A, B and two functions A
f−⇀↽−
g

B, we say that an input x ∈ A witnesses that A ⇌ B

is not an injection-surjection pair, if g(f(x)) ̸= x. Otherwise (i.e., g(f(x)) = x), we say that x maps
to itself via A ⇌ B. We also use X ∪̇ Y to denote the disjoint union of two sets X, Y .

APC1-provably reconstructive pseudorandom generators. Let N = 2n, D = 2d, M = 2m, a function
PRG : [N ]× [D]→ [M ] is called a (k, ε)-reconstructive PRG if for every subset S ⊆ [M ], for all but
at most K := 2k values of f ∈ [N ], we have∣∣∣∣ |S ∩ PRGf |

D
− |S|

M

∣∣∣∣ ≤ ε, (3)

where we write PRGf = {PRG(f, seed) : seed ∈ [D]} for convenience. Furthermore, we want this
generator to have “feasible witnesses” in the following sense:

Definition 6.1. Let G
(−)
< , H

(−)
< , G

(−)
> , H

(−)
> be polynomial-time oracle algorithms. We say that

f ∈ [N ] provides an ε-(additive) approximation of |S| feasibly, if letting val := |S ∩ PRGf | · (M/D),
then we have the following two injection-surjection pairs:

[val]× [D]
HS

<(f,−)
−−−−−⇀↽−−−−−
GS

<(f,−)
(S ∪̇ [εM ])× [D], and (4)

S × [D]
HS

>(f,−)
−−−−−⇀↽−−−−−
GS

>(f,−)
([val] ∪̇ [εM ])× [D]. (5)

Roughly speaking, these injection-surjection pairs certify (3): (G<, H<) certifies |S∩PRGf |
D ≤ |S|

M + ε,
while (G>, H>) certifies |S|

M ≤
|S∩PRGf |

D + ε.

Fix S ⊆ [M ], we want that all but K values f ∈ [N ] provide an ε-additive approximation of |S|
feasibly. In fact, we can construct a pair of reconstruction algorithm Comp and Decomp, which are
deterministic oracle algorithms satisfying the following. Given any witness w that (4) or (5) is not
an injection-surjection pair, CompS(f, w) compresses f into an element f̃ ∈ [K] (i.e., compresses f
into k bits), and DecompS(f̃) decompresses f̃ back to f .

The following theorem asserts that some explicit generator (in fact, the Nisan–Wigderson
generator [NW94]) has “feasible witnesses” in the above sense. It is implicit in [Jeř07a]; for
completeness, we provide a proof in Appendix C.

Theorem 6.2. Let n, m ∈ N, ε > 0, and ρ > 1 be parameters. Let d := O
(

log2(nm/ε)
log ρ

)
and

k := d + (ρ + 1)(m− 1) + O(log(m/ε)). Let N := 2n, M := 2m, K := 2k, and D := 2d.
Then there is a (k, ε)-reconstructive generator PRG : [N ]× [D]→ [M ] with poly(ρmn/ε)-time

deterministic oracle algorithms G<, H<, G>, H>, Comp, Decomp such that the following holds. For
every set S ⊆ [M ], every f ∈ [N ], and every input w witnessing that either (4) or (5) is not an
injection-surjection pair (where val := |S ∩ PRGf | · M

D ), we have CompS(f, w) ∈ [K] and

DecompS(CompS(f, w)) = f.
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In particular, the above theorem implies that if we take f to be “hard enough” (i.e., f is not in
the range of DecompS) then f provides an ε-additive approximation of |S| feasibly, analogous to
the classical theorem that we can use a hard truth table to derandomize BPP. This is reminiscent
of the “compress-or-random” technique in catalytic computing [Pyn24, CLMP25, KMPS25, AM25]:
Any string f is either “random”, which means it can be used for derandomization, or “compressible”
and admits a short description.

6.2 Reductions to Lossy-Code
6.2.1 AMGM-LC

We first show that c-AMGM-LC is in Lossy-Code.

Theorem 6.3. For every constant c > 1, there is a decision tree reduction of polylog(N) query
complexity from c-AMGM-LC to Lossy-Code.

Proof. Let ε := (c− 1)/3, ρ := ⌈log N⌉, d := O(log log N), k := d + (ρ + 1) log |V |+ O(log(|V |/ε)) ≤
O(log2 N), and n′ := 10⌈log N⌉2. Let D := 2d, K := 2k, and N ′ := 2n′ . Let PRG : [N ′]× [D]→ V
be defined in Theorem 6.2.

Let f ∈ [N ′]; for now, it would be convenient to assume that f successfully provides ε-
approximations feasibly. Then we can estimate the size of C−1(0) as v0 := |C−1(0)∩PRGf | ·(2N)/D;
the estimation of |C−1(1)| is thus 2N − v0 = |C−1(1)∩PRGf | · (2N)/D. Furthermore, we can obtain
injection-surjection pairs (that depend on f)

C−1(0)× [D] ⇌ [v0 + 2εN ]× [D] and (6)
C−1(1)× [D] ⇌ [2N − v0 + 2εN ]× [D]. (7)

Since
|C−1(0)| · |C−1(1)| ≤ (v0 + ε · 2N) · (2N − v0 + ε · 2N) ≤ (1 + 2ε)N2,

we obtain an injection-surjection pair

C−1(0)× C−1(1)× [D]2 ⇌ [(1 + 2ε)N2]× [D]2. (8)

Combining this with (F, G), the purported injection-surjection pair from P to H, we obtain an
injection-surjection pair

P × [D]2 ⇌ [(1 + 2ε)N2]× [D]2. (9)

Since |P | = cN2 > (1 + Ω(1)) · (1 + 2ε)N2, this would be a contradiction to the retraction weak
pigeonhole principle. Hence, by solving Lossy-Code we can find a witness that (9) is not an
injection-surjection pair, which is also an answer of the original c-AMGM-LC instance.

We have shown that given some f that successfully provides ε-approximations, we can reduce
c-AMGM-LC to Lossy-Code. But what if f does not provide such approximations? In this case,
Comp allows us to compress such f into a k-bit string. In particular:

• For any input (x, y) witnessing that (6) is not an injection-surjection pair, CompC−1(0)(f, x, y)
returns some f̃ ∈ [K] such that DecompC−1(0)(f̃) = f .

• For any input (x, y) witnessing that (7) is not an injection-surjection pair, CompC−1(1)(f, x, y)
returns some f̃ ∈ [K] such that DecompC−1(1)(f̃) = f .
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Now we are ready to formally present our reduction from AMGM-LC to Lossy-Code. Let
X := [N ′]×P × [D]2, Y1 := [N ′]× [(1 + 2ε)N2]× [D]2, Y2 := [2]× [K]×P × [D]2, and Y := Y1 ∪̇Y2.
Then

|Y | = N ′(1 + 2ε)N2 ·D2 + 2K · cN2 ·D2

≤N ′(1 + 2.1ε)N2D2

≤ (1− Ω(1))N ′ · cN2 ·D2 = (1− Ω(1))|X|.

We reduce the AMGM-LC instance to a Lossy-Code instance that consists of a pair of functions
F ∗ : X → Y and G∗ : Y → X.

• The function F ∗ : X → Y takes as inputs f ∈ [N ′] and (p, u1, u2) ∈ P × [D]2. It considers
the injection defined in (9) that corresponds to f and computes its output (q, v1, v2) on input
(p, u1, u2). Then it checks whether f is “good”: if f is “good” then it outputs (f, q, v1, v2) ∈ Y1,
otherwise it outputs some value in Y2 containing a compression of f .

More precisely, let (a, b) := F (p), assume that a ∈ C−1(0) and b ∈ C−1(1). To evaluate (9)
on input (p, u1, u2), we need to evaluate (a, u1) on (6) and (b, u2) on (7). If (a, u1) witnesses
that (6) is not an injection-surjection pair, then f is not “good”, and f can be compressed into
f̃ := CompC−1(0)(f, a, u1) ∈ [K]. We return (0, f̃ , p, u1, u2) ∈ Y2 in this case. Similarly, if (b, u2)
witnesses (7) is not an injection-surjection pair, then we let f̃ := CompC−1(1)(f, b, u2) ∈ [K]
and return (1, f̃ , p, u1, u2) ∈ Y2. If none of the above happens, then f is “good” and we return
(f, q, v1, v2) ∈ Y1.

• The function G∗ : Y → X can be decomposed into functions G∗
1 : Y1 → X and G∗

2 : Y2 → X.
In either case, we are given a “compressed” form of some (f, p, u1, u2) ∈ X and need to recover
(f, p, u1, u2).

For G∗
1 : Y1 → X, the “compressed form” is (f, q, v1, v2) ∈ Y1. This corresponds to the case

that f is “good”. We consider the surjection defined in (9) corresponding to f and compute
its output (p, u1, u2) given input (q, v1, v2). Then we output (f, p, u1, u2) ∈ X.

For G∗
2 : Y2 → X, the “compressed form” is (b, f̃ , p, u1, u2) ∈ Y2. This corresponds to the

case that f is “not good”, and we can directly compute f := DecompC−1(b)(f̃). Then we
output (f, p, u1, u2) ∈ X.

To see the correctness of this reduction, consider any input (f, p, u1, u2) witnessing that X
F ∗
−−⇀↽−−
G∗

Y

is not an injection-surjection pair. There are two cases:

• Suppose that F ∗(f, p, u1, u2) = (f, q, v1, v2) ∈ Y1. Letting (a, b) := H(p), this means that
(a, u1) maps to itself via (6), and (b, u2) maps to itself via (7). In other words, (a, b, u1, u2)
maps to itself via (8). Hence, it has to be the case that P

F−⇀↽−
G

C−1(0)× C−1(1) does not map
p to itself, which means that p is a solution to AMGM-LC.

• The other case is that F ∗(f, p, u1, u2) = (b, f̃ , p, u1, u2) ∈ Y2. We claim that this case would
not have happened. Indeed, in this case, G∗

2 always maps (b, f̃ , p, u1, u2) back to (f, p, u1, u2).

Finally, it is easy to see that both F ∗ and G∗ run in deterministic polylog(N) time.

6.2.2 Dual-AMGM-LC

Now we define the dual of the problem c-AMGM-LC, which expresses the AM-GM inequality in a
different way:
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c-Dual-AMGM-LC. Let V = [2N ], H = [c · N2]. The input consists of a coloring function
C : V → {0, 1} and two mappings F : H → V × V , G : V × V → H. Let

P := {(u, v) : C(u) = C(v)} = (C−1(0)× C−1(0)) ∪ (C−1(1)× C−1(1)).

The goal is to find a pigeon x ∈ P such that F (G(x)) ̸= x.

Theorem 6.4. For every constant 0 < c < 2, there is a decision tree reduction of polylog(N) query
complexity from c-Dual-AMGM-LC to Lossy-Code.

Proof. Let ε := (2− c)/32 and c′ := c + 8ε(1 + ε), then c′ < 2. Let ρ := ⌈log N⌉, d := O(log log N),
n′ := 10⌈log N⌉2, and k := d + (ρ + 1)(log |V | − 1) + O(log(|V |/ε)) ≤ 2⌈log N⌉2. Let D := 2d =
polylog(N), K := 2k, N ′ := 2n′ . Consider the generator PRG : [N ′]×D → V in Theorem 6.2.

Let f ∈ [N ′]. Let v0 := |C−1(0)∩PRGf |·(2N/D) and v1 := 2N−v0 be the estimations of |C−1(0)|
and |C−1(1)| provided by PRGf , respectively. Then we obtain (purported) injection-surjection pairs

[v0]× [D] ⇌ (C−1(0) ∪̇ [2εN ])× [D] and
[v1]× [D] ⇌ (C−1(1) ∪̇ [2εN ])× [D].

This implies an injection-surjection pair

[v2
0 + v2

1]× [D]2
Ff−−⇀↽−−
Gf

(
(C−1(0) ∪̇ [2εN ])2 ∪̇ (C−1(1) ∪̇ [2εN ])2

)
× [D]2

=
(
P ∪̇ (C−1(0) ∪̇ C−1(1))× [4εN ]) ∪̇ [2(2εN)2]

)
× [D]2

= (P ∪̇ [8ε(1 + ε)N2])× [D]2.

Composing this with our input P
F−⇀↽−
G

H and noting that H = [cN2] and v2
0 + v2

1 ≥ 2N2, we obtain

[2N2]× [D]2
F ◦Ff−−−⇀↽−−−
Gf ◦G

[(c + 8ε(1 + ε))N2]× [D]2 = [c′N2]× [D]2.

(Note that we are abusing notation here in “Gf ◦G” and “F ◦ Ff ”; for example, we are extending
the domain of G to H ∪̇ [8ε(1 + ε)N2] so that G is the identity map on [8ε(1 + ε)N2].)

Since (c + 8ε(1 + ε)) < 2−Ω(1), (F ◦ Ff , G ◦Gf ) is a valid Lossy-Code instance. Solving this
Lossy-Code instance gives us a witness that (F ◦ Ff , G ◦Gf ) is not an injection-surjection pair.
This implies either a witness that (F, G) is not an injection-surjection pair (which is what we need),
or a witness that (Ff , Gf ) is not an injection-surjection pair (which will allow us to compress f).

Now we formally define the complete reduction from c-Dual-AMGM-LC to Lossy-Code. Let
X := [N ′]×[2N2]×[D]2, Y1 := [N ′]×[c′N2]×[D]2, Y2 := [K +O(1)]×[2N2]×[D]2, and Y := Y1 ∪̇Y2.
Note that

|Y | = |Y1|+ |Y2| ≤ (c′ + o(1))N ′N2D2 ≤ (2− Ω(1))N ′N2D2 ≤ (1− Ω(1))|X|.

We reduce the c-Dual-AMGM-LC instance (C, F, G) to the Lossy-Code instance X
F ∗
−−⇀↽−−
G∗

Y ,
defined as follows.

• The function F ∗ : X → Y takes as inputs f ∈ [N ′] and u ∈ [2N2] × [D]2. It tests if u is
a witness that (Ff , Gf ) is not an injection-surjection pair. If this is the case, then it uses
Comp to compress f into K + O(1) bits as f̃ , and returns (f̃ , u) ∈ Y2. Otherwise it computes
v := F (Ff (u)) ∈ [c′N2]× [D]2 and returns (f, v) ∈ Y1.
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• The function G∗ : Y → X takes either (f, v) ∈ Y1 or (f̃ , u) ∈ Y2 as inputs. If the input is
(f, v) ∈ Y1 where f ∈ [N ′] and v ∈ [c′N2]×[D]2, then it computes u := G(Gf (v)) ∈ [2N2]×[D]2
and returns (f, u) ∈ X. If the input is (f̃ , u) ∈ Y2 where f̃ ∈ [K + O(1)] and u ∈ [2N2]× [D]2,
then it decompresses f ∈ [N ′] from f̃ and returns (f, u) ∈ X.

Given any (f, u) ∈ X witnessing that (F ∗, G∗) is not an injection-surjection pair, we have that
F ∗(f, u) ∈ Y1 and we can find a witness that (F, G) is not an injection-surjection pair in deterministic
polylog(N) time. Finally, F ∗, G∗ can be computed in deterministic polylog(N) time as well.

6.2.3 The Inclusion-Exclusion Principle

Finally, as a proof-of-concept, we consider the following more complicated total search problem
capturing the inclusion-exclusion principle and show that it is in LOSSY. Given that Jeřábek
already proved this principle in APC1 [Jeř07a, Proposition 2.19], it should come as no surprise
that this problem is in LOSSY. Needless to say, our proof is just a translation of Jeřábek’s proof
into the language of black-box total search problems. We include this example as an additional
demonstration of how to reduce more complicated problems to Lossy-Code via Theorem 6.2.

Consider the following inequality expressing the inclusion-exclusion principle: Let S1, S2, . . . , Sℓ ⊆
[N ] be sets, ai := |Si|, ai,j := |Si ∩ Sj |, and

ã :=
ℓ∑

i=1
ai −

∑
1≤i<j≤ℓ

ai,j , (10)

then
∣∣∣⋃i∈[ℓ] Si

∣∣∣ ≥ ã.
Now we formalize the above inequality as a TFZPP problem Inclusion-Exclusion.

Inclusion-Exclusion. The input consists of:
• Parameters N , ℓ ≤ polylog(N), and ε > 1/polylog(N).
• A table T ⊆ [ℓ]× [N ] where Ti,j = 1 if and only if j ∈ Si.
• Numbers 0 ≤ ai ≤ N for each i ∈ [ℓ], and 0 ≤ ai,j ≤ N for each 1 ≤ i < j ≤ ℓ, which are

purported estimates for |Si| and |Si ∩ Sj | respectively. Let ã be defined as in (10) and
assume ã ≥ εN .

• Injection-surjection pairs fi : [ai]→ [N ] and gi : [N ]→ [ai].
• Injection-surjection pairs fi,j : [ai,j ]→ [N ] and gi,j : [N ]→ [ai,j ].
• Finally, an injection-surjection pair f̃ : [ã− εN ]→ [N ] and g̃ : [N ]→ [ã− εN ].

The goal is to find any solution of the following types:
s1. some x ∈ [ai] such that Ti,fi(x) = 0 or gi(fi(x)) ̸= x; (Violation of |Si| ≥ ai)
s2. some x ∈ [N ] such that (Ti,x = Tj,x = 1) but fi,j(gi,j(x)) ̸= x; or

(Violation of |Si ∩ Sj| ≤ ai,j)
s3. some x ∈ [N ] such that f̃(g̃(x)) ̸= x, and there is some j ∈ [ℓ] such that Tj,x = 1.

(Violation of
∣∣∣⋃i∈[ℓ] Si

∣∣∣ ≤ ã − εN)

Theorem 6.5. Inclusion-Exclusion reduces to Lossy-Code.

Proof. Let ε′ := ε/(10ℓ2), ρ := ⌈log N⌉, d := O(log log N), k := d + (ρ + 1) log N + O(log(N/ε)) ≤
3⌈log N⌉2, and n′ := log(100ℓ4ε−1) + k ≤ 4⌈log N⌉2. Let D := 2d, K := 2k, and N ′ := 2n′ . Note
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that d′ ≥ O( log2(n′·log N/ε′)
log ρ ), hence it is valid to apply Theorem 6.2 to obtain PRG : [N ′]× [D]→ [N ].

Recall that we define Si := {j ∈ [N ] : Ti,j = 1}. We also define S := ⋃
i∈[ℓ] Si.

Let f ∈ [N ′]. We use f to estimate each |Si|, |Si ∩ Sj |, and |S| within additive error ε′ ·N . Let
vi := |Si ∩ PRGf | · (N/D), vi,j := |Si ∩ Sj ∩ PRGf | · (N/D), and v := |S ∩ PRGf | · (N/D), then we
obtain (purported) injection-surjection pairs

Si × [D] Fi−⇀↽−
Gi

([vi] ∪̇ [ε′N ])× [D], (11)

[vi,j ]× [D]
Gi,j−−⇀↽−−
Fi,j

((Si ∩ Sj) ∪̇ [ε′N ])× [D], (12)

[v]× [D] G−⇀↽−
F

(S ∪̇ [ε′N ])× [D]. (13)

If vi + 2ε′N < ai, then we can compose (11) with the injection-surjection pair (fi, gi) to obtain
the Lossy-Code instance

[ai]× [D]
fi×[D]−−−−⇀↽−−−−
gi×[D]

Si × [D] Fi−⇀↽−
Gi

[vi + ε′N ]× [D]. (14)

Here, we use the notation fi× [D] to denote the function mapping (x, y) to (fi(x), y), where x ∈ [ai]
and y ∈ [D]; gi × [D] is defined similarly. Note that since (vi+ε′N)·D

ai·D ≤ 1− ε′N
ai
≤ ε′, (14) is a valid

Lossy-Code instance with good stretch; in particular, it reduces to standard Lossy-Code (of
stretch [2t] ⇌ [t]) in decision tree depth O(1/ε′). Solving the instance (14) gives us an element
(x, y) ∈ [ai] × [D] such that either (1) x is a (Violation of |Si| ≥ ai) or (2) (fi(x), y) ∈ Si × [D]
witnesses that (11) is not a valid injection-surjection pair.

Similarly, if vi,j > ai,j + 2ε′N , then we compose (12) with the injection-surjection pair (fi,j , gi,j)
to obtain the Lossy-Code instance

[vi,j ]× [D]
Gi,j−−⇀↽−−
Fi,j

((Si ∩ Sj) ∪̇ [ε′N ])× [D]
gi,j×[D]
−−−−−⇀↽−−−−−
fi,j×[D]

[ai,j + ε′N ]× [D]. (15)

Again, we abuse notation to extend fi,j and gi,j into functions fi,j : [ai,j ] ∪̇ [ε′N ]→ [N ] ∪̇ [ε′N ] and
gi,j : [N ] ∪̇ [ε′N ]→ [ai,j ] ∪̇ [ε′N ] such that they are the identity function over [ε′N ]. (15) is a valid
Lossy-Code instance that reduces to the standard Lossy-Code in decision tree depth O(1/ε′).
Solving the instance (15) gives us an element (x, y) ∈ [vi,j ]× [D] such that either (1) x′ := Gi,j(x) is
a (Violation of |Si ∩ Sj| ≤ ai,j) or (2) (x, y) witnesses that (12) is not a valid injection-surjection
pair.

Finally, if v > ã− εN + 2ε′N , then we compose (13) with the injection-surjection pair (f̃ , g̃) to
obtain the Lossy-Code instance

[v]× [D] G−⇀↽−
F

(S ∪̇ [ε′N ])× [D]
g̃×[D]−−−−⇀↽−−−−
f̃×[D]

[ã− εN + ε′N ]× [D]. (16)

Solving the instance (16) gives us an element (x, y) ∈ [v]× [D] such that either (1) x′ := G(x) is a
(Violation of

∣∣∣⋃i∈[ℓ] Si

∣∣∣ ≤ ã−εN ) or (2) (x, y) witnesses that (13) is not a valid injection-surjection
pair.

We now observe that one of the above three cases must happen. This is exactly due to the
inclusion-exclusion principle itself: Let S̃i := Si ∩ PRGf , then∣∣∣∣∣∣

⋃
i∈[ℓ]

S̃i

∣∣∣∣∣∣ ≥
ℓ∑

i=1
|S̃i| −

∑
1≤i<j≤ℓ

|S̃i ∩ S̃j |.
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Recall that vi = |S̃i|(N/D), vi,j = |S̃i ∩ S̃j |(N/D), and v =
∣∣∣⋃i∈[ℓ] S̃i

∣∣∣(N/D), hence v ≥
∑ℓ

i=1 vi −∑
1≤i<j≤ℓ vi,j . If all three cases above do not happen, then

ã ≥ v + εN − 2ε′N (∵ v > ã− εN + 2ε′N does not happen)

≥
ℓ∑

i=1
vi −

∑
1≤i<j≤ℓ

vi,j + εN − 2ε′N

≥
ℓ∑

i=1
(ai − 2ε′N)−

∑
1≤i<j≤ℓ

vi,j + εN − 2ε′N (∵ vi + 2ε′N < ai does not happen)

≥
ℓ∑

i=1
(ai − 2ε′N)−

∑
1≤i<j≤ℓ

(ai,j + 2ε′N) + εN − 2ε′N (∵ vi,j > ai,j + 2ε′N does not happen)

≥
ℓ∑

i=1
ai −

∑
1≤i<j≤ℓ

ai,j + (ε− 5ℓ2ε′)N > ã,

a contradiction.
Now we are ready to describe our reduction from Inclusion-Exclusion to Lossy-Code. Let

X := [N ′]× [2N ]× [D] and Y be some set that we will define later, we will produce a Lossy-Code
instance X

F ∗
−−⇀↽−−
G∗

Y . Given an element in X, we parse it as (f, x, y) where f ∈ [N ′], x ∈ [2N ], and
y ∈ [D]. To compute F ∗(f, x, y), we find out which of the above three cases happens for f .

• Case I: Suppose that there exists i ∈ [ℓ] such that vi + 2ε′N < ai. If x ̸∈ [ai], then we let
x′ := x− ε′N and y′ := y; otherwise we feed (x, y) into

[ai]× [D]
fi×[D]−−−−⇀↽−−−−
gi×[D]

Si × [D] Fi−⇀↽−
Gi

[vi + ε′N ]× [D] (14)

to obtain (x′, y′) ∈ [vi + ε′N ] × [D]. We define Y0 := [N ′] × [2N − ε′N ] × [D] and map
F ∗(f, x, y) = (f, x′, y′) ∈ Y0.

Note that the evaluation of (14) might be ill-behaved in the following cases. Suppose
x ∈ [ai] and let x′ := fi(x). If x′ ̸∈ Si or gi(x′) ̸= x, then we know that x′ is a (Violation of
|Si| ≥ ai) and we simply let F ∗(f, x, y) := ⊥. Otherwise, if (x′, y) witnesses that (Fi, Gi) is not
an injection-surjection pair, then Si is a distinguisher for PRGf . Let Y1 := [K]× [ℓ]× [2N ]× [D],
we define F ∗(f, x, y) := (CompSi(f, x′, y), i, x, y) ∈ Y1. If both cases above do not happen, we
define F ∗(f, x, y) := (f, x′, y′) ∈ Y0 as usual.

• Case II: Suppose that there exists 1 ≤ i < j ≤ ℓ such that vi,j > ai,j + 2ε′N . If x ̸∈ [vi,j ], then
we let x′ := x− ε′N and y′ := y; otherwise we feed (x, y) into

[vi,j ]× [D]
Gi,j−−⇀↽−−
Fi,j

((Si ∩ Sj) ∪̇ [ε′N ])
gi,j×[D]
−−−−−⇀↽−−−−−
fi,j×[D]

[ai,j + ε′N ]× [D] (15)

to obtain (x′, y′) ∈ [ai,j + ε′N ]× [D]. We let F ∗(f, x, y) := (f, x′, y′) ∈ Y0.
Similarly, the evaluation of (15) might be ill-behaved in the following cases. Suppose

x ∈ [vi,j ]. If (x, y) witnesses that (Gi,j , Fi,j) is not a valid injection-surjection pair, then
Si ∩ Sj is a distinguisher for PRGf ; in this case, letting Y2 := [K] × [ℓ]2 × [2n] × [D], we
map F ∗(f, x, y) := (CompSi∩Sj (f, x, y), i, j, x, y) ∈ Y2. Otherwise, let (x′, y′) := Gi,j(x, y), if
x′ ∈ Si ∩ Sj but x′ witnesses that (gi,j , fi,j) is not a valid injection-surjection pair, then x′ is a
(Violation of |Si ∩ Sj| ≤ ai,j) and we simply let F ∗(f, x, y) := ⊥. If both cases above do not
happen, we define F ∗(f, x, y) = (f, x′, y′) ∈ Y0 as usual.
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• Case III: Suppose that v > ã− εN + 2ε′N . If x ̸∈ [v], then we let x′ := x− ε′n and y′ := y;
otherwise we feed (x, y) into

[v]× [D] G−⇀↽−
F

(S ∪̇ [ε′N ])× [D]
g̃×[D]−−−−⇀↽−−−−
f̃×[D]

[ã− εN + ε′N ]× [D] (16)

to obtain (x′, y′) ∈ [ã− εN + ε′N ]× [D]. We let F ∗(f, x, y) = (f, x′, y′) ∈ Y0.
Similarly, the evaluation of (16) on (x, y) might be ill-behaved in the following cases.

Suppose x ∈ [v]. If (x, y) witnesses that (G, F ) is not a valid injection-surjection pair, then
S is a valid distinguisher for PRGf ; in this case, letting Y3 := [K] × [2N ] × [D], we map
F ∗(f, x, y) := (CompS(f, x, y), x, y) ∈ Y3. Otherwise, let (x′, y′) := G(x, y), if x′ ∈ S but
x′ witnesses that (g̃, f̃) is not a valid injection-surjection pair, then x′ is a (Violation of∣∣∣⋃i∈[ℓ] Si

∣∣∣ ≤ ã − εN) and we let F ∗(f, x, y) := ⊥. If both cases above do not happen, we
define F ∗(f, x, y) := (f, x′, y′) ∈ Y0 as usual.

Let Y be the disjoint union Y := Y0 ∪̇ Y1 ∪̇ Y2 ∪̇ Y3 ∪̇ {⊥}, then

|Y |
|X|
≤ N ′(2N − ε′N)D + K · 2ℓ2 · 2N ·D + 1

N ′ · 2N ·D
≤ 1− ε′/2 + (K · 2ℓ2 + 1)/N ′ ≤ 1− ε′/4.

We have described a function F ∗ : X → Y and it remains to describe G∗ : Y → X. The Lossy-Code
instance (F ∗, G∗) reduces to a standard Lossy-Code instance (of stretch [2t] ⇌ [t]) in decision tree
depth O(log(1/ε′)) ≤ polylog(N). Given an input in Y :

• If the input is (f, x′, y′) ∈ Y0, then one of the above three cases happen for f ; depending on
this, we map (x′, y′) back to (x, y) via the appropriate surjection. For example, in case I: If
x′ ̸∈ [vi + ε′n] then we let x := x′ + ε′n and y′ := y; otherwise we let (x′′, y) := Gi(x′, y′) and
x := gi(x′).

• If the input is (f̂ , i, x, y) ∈ Y1, then we recover f := DecompSi(f̂) and return (f, x, y).
• If the input is (f̂ , i, j, x, y) ∈ Y2, then we recover f := DecompSi∩Sj (f̂) and return (f, x, y).
• If the input is (f̂ , x, y) ∈ Y3, then we recover f := DecompS(f̂) and return (f, x, y).
• We do not care about the value of G∗(⊥); we map it to an arbitrary value.

Finally, we need to argue that this is a correct reduction. Let (f, x, y) ∈ X. If F ∗(f, x, y) ∈ Y0, then
the injection-surjection pairs ((14), (15), (16)) are well-behaved, hence G∗(F ∗(f, x, y)) = (f, x, y);
if F ∗(f, x, y) ∈ Y1 ∪ Y2 ∪ Y3, then the compression (CompO(f, x, y) for the suitable oracle O)
works correctly, hence G∗(F ∗(f, x, y)) = (f, x, y) as well. Therefore, if (f, x, y) is a solution of the
Lossy-Code instance, then F ∗(f, x, y) = ⊥. As discussed above, in this case, we will find a solution
of Inclusion-Exclusion.

6.2.4 Conclusion: LOSSY-Completeness

Finally, it is easy to see that the problems we considered (AMGM-LC, Dual-AMGM-LC, and
Inclusion-Exclusion) are at least as hard as Lossy-Code, hence they are LOSSY-complete.

Theorem 6.6. The following problems are LOSSY-complete:

• c-AMGM-LC for every constant c > 1;
• c-dual-AMGM-LC for every 0 < c < 2;
• Inclusion-Exclusion.
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7 Dense Linear Ordering
Finally, we show that the dense version of the Linear Ordering Principle reduces to Lossy-Code.
The Linear Ordering Principle was recently studied by Korten and Pitassi [KP24], where they
showed that Avoid reduces to Linear Ordering. In the TFNP world, we show the opposite reduction
and prove that Dense Linear Ordering reduces to Lossy Code. This problem has been studied in
proof complexity [Rii01, AD08, Gry19, CdRN+23] as well.

Dense-Linear-Ordering. The input consists of the descriptions of a linear ordering ≺ over
N elements and a median function med : [N ] × [N ] → [N ]. Without loss of generality, we
may assume that for x ̸= y ∈ [N ], exactly one of (x ≺ y) and (y ≺ x) is true, and that
med(x, y) = med(y, x). (That is, ≺ is represented by a string of

(N
2

)
bits and med is represented

by a list of
(n

2
)

elements in [N ].) A solution is one of the following.
s1. x, y, z ∈ [N ] such that x ≺ y, y ≺ z, and z ≺ x; or (Transitivity Violation)
s2. x, y ∈ [N ] such that x ≺ y, but neither x ≺ med(x, y) nor med(x, y) ≺ y.

(Invalid Median)

Theorem 7.1. Dense-Linear-Ordering reduces to Lossy-Code.

Proof. Let (≺, med) be an input of Dense-Linear-Ordering over a universe U of size N .
Fix some arbitrary l0, r0 in advance such that l0 ≺ r0, and let ℓ := 4 log N . Consider the

following Lossy-Code instance (f, g) between U and {L, R}≤ℓ.

Algorithm 5 f : U → {L, R}≤ℓ

1: function f(m)
2: σ ← the empty string
3: for i← 1 to ℓ do
4: mi−1 ← med(li−1, ri−1)
5: if mi−1 = m then
6: return σ
7: else if m ≺ mi−1 then
8: (li, ri)← (li−1, mi−1), σ ← σ ◦ L
9: else ▷ mi−1 ≺ m

10: (li, ri)← (mi−1, ri−1), σ ← σ ◦ R
11: return σ ▷ regardless of whether we have

arrived at m

Algorithm 6 g : {L, R}≤ℓ → U
1: function g(σ)
2: for i← 1 to |σ| do
3: mi−1 ← med(li−1, ri−1)
4: if σi = L then
5: (li, ri)← (li−1, mi−1)
6: else ▷ σi = R
7: (li, ri)← (mi−1, ri−1)
8: return med(l|σ|, r|σ|)

In the following discussion, we assume that throughout the executions of f and g, we always
have li ≺ ri for each valid i. This is because otherwise we can find an (Invalid Median): Let i be the
smallest index such that li ̸≺ ri, then i ≥ 1 and li−1 ≺ ri−1. Either we have (li, ri) = (li−1, mi−1),
or we have (li, ri) = (mi−1, ri−1). In both cases, (li−1, ri−1) has an (Invalid Median).

Consider the following scenario. Suppose that g(σ) = v, but during the execution of g(σ), we
encountered some interval (li, ri) such that either (li ̸≺ v) or (v ̸≺ ri). We argue that in this scenario,
it is easy to find a solution of (≺, med). Suppose li ̸≺ v; the case that v ̸≺ ri can be handled
symmetrically.

• If l|σ| ̸≺ v then, (l|σ|, r|σ|) has an (Invalid Median).
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• Otherwise there is an index j ∈ [i, |σ|) such that lj ̸≺ v but lj+1 ≺ v. It follows that lj ̸= lj+1,
which implies that lj+1 = med(lj , rj).

– If lj ̸≺ lj+1 then we have an (Invalid Median) (lj , rj).
– Otherwise, since lj+1 ≺ v and lj ≺ lj+1, we have v ̸= lj . Since lj ̸≺ v, we have v ≺ lj .

Now we have a (Transitivity Violation) (lj , lj+1, v) where v ≺ lj , lj ≺ lj+1, and lj+1 ≺ v.

Now we prove the correctness of our reduction. That is, given any string σ ∈ {L, R}≤ℓ such that
f(g(σ)) ̸= σ, we can find a solution for Dense-Linear-Ordering. Let v := g(σ) and σ′ := f(v),
then σ′ ̸= σ. Let i be the smallest index such that σ′

i ≠ σi. In particular, if σ′ is a prefix of σ then
we define i := |σ′|+ 1. (Note that it cannot be the case that σ is a prefix of σ′, as otherwise the
execution of f(v) would have reached the element v in the |σ|-th step and returned σ instead of
σ′.) It follows that the first i− 1 rounds of f(v) and g(σ) produce the same intervals {(lj , rj)}0≤j<i.
Assume that σi = L; the case that σi = R is symmetric. Let (lgi , rg

i ) denote the interval (li, ri) in the
execution of g(σ), then lgi = li−1 and rg

i = mi−1 = med(li−1, ri−1).

• If i = |σ′|+ 1, then mi−1 = v = g(σ).
• Otherwise, σ′

i = R and hence mi−1 ≺ v = g(σ).

In either case, we have found some (lgi , rg
i ) during the execution of g(σ) such that v ̸≺ rg

i . By the
previous discussion, we can find a solution of (≺, med).

8 Open Problems
We end with some future directions. The main problem left open by this work is to exhibit a natural
problem in TFZPPdt which is not reducible to Lossy-Code; we conjecture that Nephew is such a
problem. Some additional open questions are the following:

• Find a TFZPP upper bound for Bertrand-Chebyshev, i.e., a natural problem in TFZPP
to which Bertrand-Chebyshev reduces. The best upper bound we are aware of is only
LOSSYFactoring [PWW88, Kor22], which is in LOSSYPPA and LOSSYPWPP under the general-
ized Riemann Hypothesis [Jeř16]. Unfortunately, none of these upper bound classes are in
TFZPP.

• Find a TFZPP upper bound for the following problem, which we call Razborov-Smolensky
[Raz87, Smo87]: The input is an AC0[2] circuit C of depth d and size at most 2n1/10d that
attempts to compute MAJ (the Majority function), and the goal is to output an instance
x ∈ {0, 1}n such that C(x) ̸= MAJ(x). Since MAJ is average-case hard against such circuits,
this problem sits in TFZPP. This problem is trivially solvable in deterministic quasi-polynomial
time (note that the naïve algorithm runs in 2O(n) time while the input size is 2nΩ(1)), hence
we are interested in the regime where only polynomial-time reductions are allowed. We are
not aware of any syntactic subclass of TFZPP that contains this problem.

• Is Bij-Lossy-Code ∈ PPAD? Observe that Bij-Lossy-Code is equivalent to End-of-Line
with half of the vertices designated as distinguished sources. The simple argument showing
Lossy-Code ∈ PPADS, that is, output the solution returned by the PPAD solver on the
original graph, does not work here, since the PPAD solver may return one of the distinguished
sources. Recently, Goldberg and Hollender [GH21] gave an involved proof that End-Of-Line
with k distinguished sources belongs to PPAD when k = polylog(N), where N denotes the
size of the graph. However, their argument does not extend to the case that k = poly(N)
since the PPAD instance they constructed has size NΩ(k).
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• Can Binary-Empty-Child be separated from Bij-Lossy-Code?
• What is the relationship between Dense-Linear-Ordering and Bij-Lossy-Code?
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A Herbrandization
Herbrandization is a basic construction in logic. Roughly speaking, any TFΣP

2 problem L can be
captured by a logical formula ∀x∃y∀z φ(x, y, z),12 where the task of L is, given x, to find a y such
that ∀z φ(x, y, z) holds. To Herbrandize this formula, we add another function h (treated as an
input oracle) and consider the formula ∀x∃y φ(x, y, h(y)). One can then define a TFNP problem by
treating h as a first-order variable like x, where the task is, given x and h, to find a y such that
φ(x, y, h(y)) holds.

12Formally, they are called “∀Σb
2-formulas”, where the subscript 2 stands for two alternations (∀∃∀) and the

superscript b stands for “bounded”, i.e., the lengths of x, y, z are polynomially related and φ is a polynomial-time
predicate.
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TFΣP
2 search problem TFNP problem via Herbrandization
∀x∃y∀z φ(x, y, z) ∀x, h∃y φ(x, y, h(y))

Avoid:
∀D∃x∀y D(y) ̸= x

Lossy-Code:
∀C, D∃x D(C(x)) ̸= x

(1):
∀F∃x∀y (F (F (y)) ̸= F (x) ∨ F (y) = x)

Nephew:
∀F, G∃x (F (F (G(x))) ̸= F (x) ∨ F (G(x)) = x)

Table 1: Some examples of TFNP problems via Herbrandization.

B Proof Complexity Characterizations of Randomized Reductions
In this section we prove Theorem 3.4, which we restate next.

Theorem B.1. If a proof system P is characterized by the total search problems reducible to
R ∈ TFNPdt, then rP is characterized by the total search problems that are randomized-reducible
to R.

Proof. Fix a complexity c rP proof D of a CNF formula H. We will construct a complexity Θ(c)
randomized reduction from SearchH to a complete problem SearchF for C. On input x ∈ {0, 1}n
the reduction first samples (Π, B) from the distribution D given by the rP proof, where Π is a
complexity c P-proof of H ∧B. Since by assumption P is characterized by C, this implies that there
is a complexity O(c) reduction T = (T, {To}) from SearchH∧B to SearchF . Relabel each leaf of
an output decision tree To in T , which is labelled with a clause of B, by ⊥, indicating a failure
event of the randomized reduction.

Observe that property (1) (correctness) of a randomized reduction to SearchH is satisfied. It
remains to argue that property (2) (error probabilities) is also satisfied. This follows since the
reduction was constructed from a rP proof. Indeed, the probability that the reduction fails is the
probability that we sampled a reduction T = (T, {To}) and the leaf of the output decision tree that
we arrive at when following x is labelled by ⊥. By construction, we arrive at a ⊥ leaf only if we
falsify a clause of the corresponding CNF B. However, by the definition of an rP proof, for every x
the probability that every clause in B is satisfied by x is at least 2/3.

For the converse, let SearchF be a C-complete problem and let D be a randomized reduction
from SearchH to SearchF of complexity c. We will argue that each T ∼ D is a deterministic
reduction from SearchH∧B to SearchF for some CNF formula B of width O(c2). Because C is
characterized by P , we will obtain a P proof of H ∧B, and putting these together, a rP proof of H.

Let F = C1 ∧ . . . ∧ Cm and let T ∼ D where T := ({Ti}i∈[n], {To}o∈[m]). Following [BFI23], let
the reduced formula FT be the CNF formula obtained as follows: for each clause C ∈ F , let the
decision tree T C be obtained by sequentially running the decision trees Ti for each i ∈ vars(C) to
obtain an assignment α ∈ {0, 1}vars(C). If C(α) = b ∈ {0, 1} then label this a “b-leaf”, for b ∈ {0, 1}.
Say that a root-to-leaf path p ∈ T C is a b-path if it ends at a b-leaf. Define

C(T ) :=
∧

0-path p∈T C

¬p

In words, C(T ) says that the clause C, after substituting T for the variables, is never falsified. The
reduced CNF formula is

FT :=
∧

o∈[m]

Co(T ) ∨
∧

p∈To

¬p

 .
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FT formalizes the definition of a reduction (Equation 2) by T to SearchF —if we falsify Co(T ) and
follow path p in To then the label of the leaf of p is a valid solution to the search problem reducing
to SearchF by T . Hence, T is a reduction from a CNF formula H ∧B to F iff each clause of FT
is a weakening13 of a clause of H ∧B.

Then, knowing H, we can recover B as follows: let B be the set of all clauses of FT which are
not a weakening of any clause of H. Then T is a reduction from SearchH∧B to SearchF . Note
that the width of the clauses in B is at most O(c2) as every clause in F has width O(c), the trees
in T have depth O(c), and we have substituted the decision trees for the variables of the clause.

It remains to argue that for every x ∈ {0, 1}n, Pr(Π,B)∼D[B(x) = 1] ≥ 2/3. This is immediate
from the fact that T is a randomized reduction to SearchF . Indeed, each clause K ∈ FT comes
from some Co(T )∨¬p for p ∈ To and some o ∈ [m]. That is, K = ¬p∗∨¬p for some 0-path p∗ ∈ T C .
Hence, by the definition of a randomized reduction,

2/3 ≤ Pr
T ∼D

[∀o ∈ [m] : (o, T (x)) ̸∈ SearchF ∨ To(x) ̸= ⊥]

= Pr
T ∼D

[∀o ∈ [m] : Co(T (x)) ̸= 0 ∨ To(x) ̸= ⊥]

= Pr
T ∼D

[
∀o ∈ [m],∀ 0-paths p∗ ∈ T Co ,∀ ⊥-paths p ∈ To : ¬p∗(x) = 1 ∨ ¬p(x) = 1

]
= Pr

T ∼D
[∀K ∈ B : K(x) = 1] . (B are clauses of FT )

C Proof of Theorem 6.2
Weak designs. We say that I1, I2, . . . , Im ⊆ [d] is a weak (ℓ, ρ)-design if:

• For every i ≤ m, |Ii| = ℓ; and
• For every i ≤ m, ∑

j<i

2|Si∩Sj | ≤ ρ · (m− 1).

Theorem C.1 ([RRV02]). For every ℓ, m ∈ N and ρ > 1, there is a weak (ℓ, ρ)-design S1, S2, . . . , Sm ⊆
[d] with

d =
⌈

ℓ

ln ρ

⌉
· ℓ.

Moreover, such a family can be found in deterministic time poly(m, d).

List-decodable codes. A pair of functions (Enc, Dec) is called an (L, 1/2− ε)-list-decodable code if:

• Enc : {0, 1}n → {0, 1}2ℓ and Dec : {0, 1}2ℓ → ({0, 1}n)L are computable in deterministic
polynomial time, and

• for every x ∈ {0, 1}n and y ∈ {0, 1}2ℓ such that y is (1/2− ε)-close to Enc(x), Enc(x) appears
in the list Dec(y).

Theorem C.2 ([STV01]). For every n ∈ N and ε > 0, there exists an (L, 1/2− ε)-list-decodable code
with ℓ = O(log(n/ε)) and L = poly(1/ε).

13A clause C is a weakening of a clause D if the literals of D are a subset of the literals of D.
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In what follows, for notational convenience, we will think of length-2ℓ strings f ∈ {0, 1}2ℓ as
(the truth tables of) ℓ-bit Boolean functions f : {0, 1}ℓ → {0, 1}.

Theorem 6.2. Let n, m ∈ N, ε > 0, and ρ > 1 be parameters. Let d := O
(

log2(nm/ε)
log ρ

)
and

k := d + (ρ + 1)(m− 1) + O(log(m/ε)). Let N := 2n, M := 2m, K := 2k, and D := 2d.
Then there is a (k, ε)-reconstructive generator PRG : [N ]× [D]→ [M ] with poly(ρmn/ε)-time

deterministic oracle algorithms G<, H<, G>, H>, Comp, Decomp such that the following holds. For
every set S ⊆ [M ], every f ∈ [N ], and every input w witnessing that either

[val]× [D]
HS

<(f,−)
−−−−−⇀↽−−−−−
GS

<(f,−)
(S ∪̇ [εM ])× [D] or S × [D]

HS
>(f,−)
−−−−−⇀↽−−−−−
GS

>(f,−)
([val] ∪̇ [εM ])× [D]

is not an injection-surjection pair (where val := |S ∩ PRGf | · M
D ), we have CompS(f, w) ∈ [K] and

DecompS(CompS(f, w)) = f.

Proof. Let ε′ be the biggest (inverse) power of 2 such that ε′ ≤ ε/m. Let (Enc, Dec) be an
(L, 1/2− ε′)-list-decodable code guaranteed by Theorem C.2 with ℓ = O(log n/ε′) = O(log(nm/ε))
and L ≤ poly(1/ε′) ≤ poly(m/ε). Let I1, I2, . . . , Im ⊆ [d] be a weak (ℓ, ρ)-design guaranteed by
Theorem C.1 with d = O(ℓ2/ log ρ). Given f ∈ {0, 1}n and z ∈ {0, 1}d as inputs, the generator first
computes f̃ := Enc(f), and then outputs

PRG(f, z) := (f̃(z|I1), f̃(z|I2), . . . , f̃(z|Im)).

The classical proof of Nisan–Wigderson [NW94] shows that for every S ⊆ {0, 1}m and every
f ∈ {0, 1}n that is worst-case hard against S-oracle circuits, f provides an additive approximation
of |S|, i.e., ∣∣∣∣ |S ∩ PRGf |

D
− |S|

M

∣∣∣∣ ≤ ε.

The proof of the above fact goes through a hybrid argument and considers the following intermediate
generators. For each 0 ≤ i ≤ m, let Hybi : {0, 1}d × {0, 1}m → {0, 1}m denote the generator that
takes z ∈ {0, 1}d and r ∈ {0, 1}m as inputs, and outputs

Hybi(z, r) := (f̃(z|I1), . . . , f̃(z|Ii), ri+1, . . . , rm).

Let Vi := {(z, r) : Hybi(z, r) ∈ S}; intuitively, |Vi| is an estimation of |S| · 2d by the generator Hybi.
Suppose f is hard, then for every 1 ≤ i ≤ m, |Vi−1| is close to |Vi|. It follows that |V0| is close to
|Vm|. Since |V0| = 2d · |S| and |Vm| = |S ∩ PRGf | · 2m = val · 2d, val is a good estimation of |S|.

In a nutshell, the proof of [Jeř07a, Theorem 2.7] proceeds by constructing injection-surjection
pairs witnessing |Vi−1| ≲ |Vi| and |Vi−1| ≳ |Vi| for each i. Composing all these injection-surjection
pairs gives the final injection-surjection pairs witnessing |V0| ≲ |Vm| and |V0| ≳ |Vm| respectively.

Fix 1 ≤ i ≤ m, we now aim to construct injection-surjection pairs witnessing the inequalities
|Vi−1| ≲ |Vi| and |Vi−1| ≳ |Vi|. That is, letting diff := ε′ ·2m+d, we will construct injection-surjection

pairs Vi
Hi−⇀↽−
Gi

Vi−1 ∪̇ [diff ] and Vi−1
H′

i−⇀↽−
G′

i

Vi ∪̇ [diff ] that depends on f . Moreover, if f is indeed a

“hard function”, then these injection-surjection pairs will be valid, i.e., Gi ◦Hi is the identity map
on Vi and G′

i ◦H ′
i is the identity map on Vi−1.

Let z ∈ {0, 1}d and r ∈ {0, 1}m, we denote z′ := z|Ii and aux := (z|[d]\Ii
, r[m]\i). Note that there

is a one-to-one correspondence between (z, r) and (z′, ri, aux). Now given i, aux, we define

Xi,aux := {(z′, ri) : (f̃(z|I1), f̃(z|I2), . . . , f̃(z|Ii−1), ri, ri+1, . . . , rn) ∈ S} and
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Yi,aux := {(z′, b) : (z′, f̃(z′)) ∈ Xi,aux}.

Then, Vi−1 = ⋃
aux(Xi,aux × {aux}) and Vi = ⋃

aux(Yi,aux × {aux}). To show that |Vi−1| ≈ |Vi|, it
suffices to show that |Xi,aux| ≈ |Yi,aux| for every aux (under the assumption that f is “hard”); this is
exactly what the next claim shows.

Claim C.3. If ||Xi,aux| − |Yi,aux|| > ε′2ℓ+1, then given (i, aux) and additional ρ · (m− 1) + 2 advice
bits, it is possible to recover a string f̃apx that is (1/2 + ε′)-close to f̃ in deterministic poly(ρm, 2ℓ)
time with oracle access to S. Moreover, given (i, aux) and f̃ , the additional advice bits can be
computed in deterministic poly(ρm, 2ℓ) time with oracle access to S.

Proof Sketch. For every b ∈ {0, 1}, define a string f̃ b ∈ {0, 1}2ℓ , where for every z′ ∈ {0, 1}ℓ, the
z′-th bit of f̃ b is 1 if and only if (z′, b) ∈ Xi,aux. It can be shown that

|Xi,aux| − |Yi,aux| = ∆(f̃1, f̃)−∆(f̃0, f̃),

where ∆(·, ·) denotes the Hamming distance of two binary strings. Since ||Xi,aux| − |Yi,aux|| > ε′2ℓ+1,
there must be some b ∈ {0, 1} such that ∆(f̃ b, f̃) /∈ [(1/2− ε′)2ℓ, (1/2 + ε′)2ℓ].

Now suppose that f̃ is fixed and (i, aux) is given. For each j < i, f̃(z|Ij ) is a function over z′

that only depends on |Si ∩ Sj | bits of z′. Hence, the truth table of this function can be recorded in
2|Si∩Sj | bits. If we write down the truth tables of f̃(z|Ij ) for every j < i as advice, this only costs∑

j<i

2|Si∩Sj | ≤ ρ · (m− 1)

advice bits. We append two additional advice bits b, b′ ∈ {0, 1}, where b indicates that ∆(f̃ b, f̃) /∈
[(1/2 − ε′)2ℓ, (1/2 + ε′)2ℓ] and b′ indicates whether ∆(f̃ b, f̃) is above 1/2 or not. It is easy to
see that we can recover a string that is (1/2 + ε′)-close to f̃ given (i, aux) and these advice bits;
moreover, these advice bits can be computed in deterministic polynomial time given (i, aux) and f
as inputs. ⋄

Composing the above claim with the list-decodable code (Enc, Dec), we obtain the following
corollary:

Corollary C.4. If ||Xi,aux|− |Yi,aux|| > ε′2ℓ+1, then given (i, aux) and additional ρ · (m−1) + log L + 2
advice bits, it is possible to compute f in deterministic poly(ρm, 2ℓ) time with oracle access to
S. Moreover, given (i, aux) and f , the additional advice bits can be computed in deterministic
poly(ρm, 2ℓ) time with oracle access to S. ⋄

Let DecompS(i, aux, α) be the procedure for computing f from (i, aux) and the advice bits α as
asserted in Corollary C.4. We now say f is “hard” if f is not in the range of DecompS . (Note that
DecompS takes k := log m + d− ℓ + m− 1 + ρ(m− 1) + log L + 2 ≤ d + (ρ + 1)(m− 1) + O(log(m/ε))
bits. As long as this is less than n bits, a hard f must exist.)

Suppose that we are given some f that is hard. We can create injection-surjection pairs between
Xi,aux and Yi,aux by brute force; this only takes deterministic poly(2ℓ) time with oracle access to S.
As an example, we construct

Yi,aux
Hi,aux−−−⇀↽−−−
Gi,aux

Xi,aux ∪̇ [ε′ · 2ℓ+1].

• Gi,aux(v): If v ∈ Xi,aux then let p be the integer such that v is the (lexicographically) p-
th smallest element of Xi,aux (the smallest element is the 0-th); if v ∈ [ε′ · 2ℓ+1] then let
p := |Xi,aux| + v. Return the p-th smallest element of Yi,aux; if |Yi,aux| ≥ p then return an
arbitrary element (say the smallest one).
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• Hi,aux(v): Suppose that v is the p-th smallest element of Yi,aux. If p < |Xi,aux| then return the
p-th smallest element of Xi,aux; otherwise return p− |Xi,aux| ∈ [ε′ · 2ℓ+1].

• It is straightforward to verify that Gi,aux ◦Hi,aux is the identity map and that Gi,aux and Hi,aux
are computable in deterministic poly(2ℓ) time.

We can similarly construct Xi,aux
H′

i,aux−−−⇀↽−−−
G′

i,aux

Yi,aux ∪̇ [ε′2ℓ+1] such that G′
i,aux ◦H ′

i,aux is the identity

map and G′
i,aux and H ′

i,aux are computable in deterministic poly(2ℓ) time.
Now we describe the functions Gi, Hi, G′

i, H ′
i.

• Let v be the input of Gi. If v ∈ Vi−1 then write v = (z, r) = (z′, ri, aux); if v ∈ [diff ] then let
aux := ⌊v/(ε′2ℓ+1)⌋ (treated as both a number in [2m+d−ℓ−1] and a length-(m + d − ℓ − 1)
string) and v′ := v − aux · ε′2ℓ+1. Assuming f is hard, we have v ∈ Xi,aux ∪̇ [ε′2ℓ+1]. Let
u := Gi,aux(v) ∈ Yi,aux, write u = (zu, ru

i ) and return Gi(v) := (zu, ru
i , aux).

• Let u ∈ Vi be the input of Hi, and write u := (z′, ri, aux) where (z′, ri) ∈ Yi,aux. We can
compute v := Hi,aux(z′, ri) ∈ Xi,aux ∪̇ [ε′2ℓ+1]. If v ∈ Xi,aux then we write v = (zv, rv

i ) and
return (zv, rv

i , aux) ∈ Vi−1; if v ∈ [ε′2ℓ+1] then we return aux · ε′2ℓ+1 + v ∈ [diff ].
• The definitions of G′

i, H ′
i are analogous.

It is easy to see that if f is indeed hard, then Gi ◦ Hi is the identity map. However, if f
is not hard, there is no guarantee that Gi ◦ Hi is the identity map. Nevertheless we still gain
something: Given any witness u ∈ Vi such that Gi(Hi(u)) ̸= u, if we write u = (z′, ri, aux) then we
have ||Xi,aux| − |Yi,aux|| > ε′2ℓ+1. By Corollary C.4, we can compute (i, aux, α) from this witness u
deterministically such that DecompS(i, aux, α) = f , i.e., we found a witness for the non-hardness
of f as well! In summary, let f be a purported hard function, we can either use f to perform
approximate counting and obtain injection-surjection pairs (Gi, Hi) or, if (Gi, Hi) fails to be an
injection-surjection pair, exploit this failure to compress f .

Finally, we can compose the functions {Gi}, {Hi}, {G′
i}, and {H ′

i} to obtain G<, H<, G>, H>.

• Let v ∈ (S ∪̇ [εM ]) × [D] = V0 ∪̇ [m · diff ] be the input of G<. For each i from 1 to m, if
currently we have v ∈ Vi−1 ∪̇ [diff ], then we update v ← Gi(v); otherwise v ∈ [diff , m · diff )
and we update v ← v − diff .

• Let v ∈ Vm = [val] × [D] be the input of H<. For each i from m downto 1, if currently we
have v ∈ Vi, then we update v ← Hi(v); otherwise v is some number in [m · diff ] and we
update v ← v + diff .

• The definitions of G>, H> are analogous.

It is easy to see that the functions

[val]× [D] H<−−⇀↽−−
G<

(S ∪̇ [εM ])× [D]

satisfy the following property: given any w ∈ [val]× [D] such that G<(H<(w)) ̸= w, we can compute
in deterministic poly(n, 2ℓ) = poly(n/ε) time a “compression” CompS(f, w) of f that decompresses
to f via DecompS . Furthermore, G< and H< themselves can be computed in deterministic poly(n/ε)
time. The conclusions for G> and H> can be proved similarly.
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